Calculating Solar Power Capacity and Energy Storage System for Dinsen Long An Factory: a Case Study

Thanh-Tuan Pham, Tien-Dung Tran, Kieu-Anh Ha, Phuong-Anh Vu Thi, Do Qouc Am

Abstract


Installing solar rooftops benefits factories by cutting costs, supporting grid stability, and promoting sustainable energy practices which is necessary for requirements of green production. Therefore, rooftop solar has attracted and developed fast in areas with high solar radiation. This study focuses on the comprehensive assessment and determination of the solar power capacity and energy storage system implemented for the Dinsen Factory located in LongAn Province. The goal is to optimize the renewable energy integration to meet the energy demands of the factory while ensuring reliability and sustainability. Various factors including geographical location, solar resource availability, energy consumption patterns, and technological considerations are taken into account for accurate capacity calculations. Additionally, the study evaluates the integration of an energy storage system to address intermittent solar energy generation and ensure a consistent and reliable power supply to the factory. The findings and recommendations of this study aim to guide the efficient deployment of solar power and energy storage systems, promoting sustainability and reducing the reliance on non-renewable energy sources at the Dinsen Factory. The investigated results show that the optimum rooftop solar power is 2,150 kWp which generates an electricity output of approximately 2,913 MWh per year. The energy output can meet ~53.2 % electricity demand of the Factory. The solar projects contribute to environmental benefits by reducing greenhouse gas emissions of about 2,344 tons of CO2 saved per year.

Keywords


Grid-connected photovoltaic system; HomerPro; Optimum capacity of energy storage; Optimum power capacity; Techno-economic analysis

Full Text:

PDF

References


Sadi M. Alsagri A.S., Rahbari H.R., Khosravi S., and Arabkoohsar A., 2024. Thermal energy demand decarbonization for the industrial sector via an innovative solar combined technology. Energy 292: 130523. doi: 10.1016/j.energy.2024.130523

Li B., Zhou W., Xian Y., and Guan X., 2024. Forecasting the energy demand and CO2 emissions of industrial sectors in China’s Beijing-Tianjin-Hebei region under energy transition. Environmental Science and Pollution Research 31(5): 7283-7297. doi: 10.1007/s11356-023-31538-w

Lingli Q., Abbas J., Najam H., Ma X., and Dagestani A.A., 2024. Investment in renewable energy and green financing and their role in achieving carbon-neutrality and economic sustainability: Insights from Asian region. Renewable Energy 221: 119830. doi: 10.1016/j.renene.2023.119830

Zheng M. and Y.W. Chun. 2024. The impact of digital economy on renewable energy development in China. Innovation and Green Development 3(1): 100094. doi: 10.1016/j.igd.2023.100094

Dehshiri S.J.H., Maghsoud A., and Seyed M.H.B., 2024. Evaluating the blockchain technology strategies for reducing renewable energy development risks using a novel integrated decision framework. Energy 289: 129987. doi: 10.1016/j.-energy.2023.-129987

Adebayo T.S. and S. Ahmed. 2024. Renewable energy, fiscal policy and load capacity factor in BRICS countries: novel findings from panel nonlinear ARDL model. Environment, Development and Sustainability 26(2): 4365-4389. doi: 10.1007/s10668-022-02888-1

Mateo C., Frias P., Cossent R., Sonvilla P., Barth B., 2017. Overcoming the barriers that hamper a large-scale integration of solar photovoltaic power generation in European distribution grids. Solar Energy 153: 574-583. doi: 10.1016/j.solener.2017.06.008

Wan C., Zhao J., Song Y., Xu Z., Lin J., and Hu Z., 2015. Photovoltaic and solar power forecasting for smart grid energy management. CSEE Journal of Power and Energy Systems 1(4): 38-46. doi: 10.17775/CSEEJPES.2015.00046

Calvillo C.F., Sánchez-Miralles A., and Jose Villar., 2016. Energy management and planning in smart cities. Renewable and Sustainable Energy Reviews 55: 273-287. doi: 10.1016/j.rser.2015.10.133

Tran V.T., Islam M.R., Muttaqi K.M., and Sutanto D., 2019. An efficient energy management approach for a solar-powered EV battery charging facility to support distribution grids. IEEE Transactions on Industry Applications 55(6): 6517-6526. doi: 10.1109/TIA.2019.2940923

Pfahl, A., Coventry, J., Röger, M., Wolfertstetter, F., Vásquez-Arango, J. F., Gross, F., and Liedke, P., 2017. Progress in heliostat development. Solar Energy 152: 3-37. doi: 10.1016/j.solener.2017.03.029.

Sheikholeslami, M., Farshad S.A., Embrahimpour Z., and Said Z., 2021. Recent progress on flat plate solar collectors and photovoltaic systems in the presence of nanofluid: a review. Journal of Cleaner Production 293: 126119. doi: 10.1016/j.jclepro.2021.126119

Pham, Thanh Tuan, Ngoc Hai Vu, and Seoyong Shin. 2019. Novel design of primary optical elements based on a linear fresnel lens for concentrator photovoltaic technology. Energies: 12.7: 1209. doi: 10.3390/en12071209

Pham, Thanh Tuan, Ngoc Hai Vu, and Seoyong Shin., 2018. Design of curved Fresnel lens with high performance creating competitive price concentrator photovoltaic. Energy Procedia 144: 16-32. doi: 10.1016/j.egypro.2018.06.004

El Hassani S., Horma O., Selhi O., Moussaoui M.A., and Merzrhab A., 2023. Modeling and evaluating concentrated solar power plant performance in Morocco: a parametric study. International Journal of Energy for a Clean Environment 24(6): 1-17. doi: 10.1615/InterJEnerCleanEnv.2022043957

Lubner C.E., Applegate A.M., Knorzer P., and Golbeck J.H., 2011. Solar hydrogen-producing bionanodevice outperforms natural photosynthesis. Proceedings of the National Academy of Sciences 108.52: 20988-20991. doi: doi.org/10.1073/pnas.111466010

El Hassani S., Charai M., Moussaoui, and Mezrhab A., 2023. Towards rural net-zero energy buildings through integration of photovoltaic systems within bio-based earth houses: Case study in Eastern Morocco. Solar Energy 259: 15-29. doi: 10.1016/j.solener.2023.05.007.

El Hassani S., Oueslati F., Horma O., Santana D., Moussaoui M.A., and Mezrhab A., 2023. Techno-economic feasibility and performance analysis of an islanded hybrid renewable energy system with hydrogen storage in Morocco. Journal of Energy Storage 68: 107853. doi: 10.1016/j.est.2023.107853

Akpolat A.N., Dursun E., Kuzucuoglu A.E., Yang Y., Vlaabjerg F., and Baba A.F., 2019. Performance analysis of a grid-connected rooftop solar photovoltaic system. Electronics 8.8: 905. doi: 10.3390/electronics8080905

Piyush S., Bojja H., and Yemula P., 2016 Techno-economic analysis of off-grid rooftop solar PV system. 2016 IEEE 6th International Conference on Power Systems (ICPS). IEEE, doi: 10.1109/ICPES.2016.7584208

Weidong X., 2017. Photovoltaic Power System: Modeling, Design, and Control. John Wiley & Sons. DOI: 10.1002/9781119280408.

Hassani S.E., Ouali H.A.L., Moussaoui M.A., and Mezrhab A., 2021. Techno-economic analysis of a hybrid CSP/PV plants in the eastern region of Morocco. Applied Solar Energy 57.4: 297-309. doi: 10.3103/S0003701X21040046

Yaman A.J. and E. Hossain. 2022. Photovoltaic Systems. Springer. doi: 10.1109/5.241491

Kumar A., Andleeb M., and Bakhsh F.I., 2021. Design and analysis of solar PV rooftop in Motihari. Journal of Physics: Conference Series. Vol. 1817. No. 1. IOP Publishing, 2021. Doi: 10.1088/1742-6596/1817/1/012019

Kathar S.S., Thosar A.G., and Patil G.C., 2017. Design of rooftop solar pv. International Journal of Electrical Engineering & Technology (IJEET) 8.2: 81-92.

Gong X. and M. Kulkarni. 2005. Design optimization of a large-scale rooftop photovoltaic system. Solar Energy 78(3): 362-374. doi: 10.1016/j.solener.2004.08.008

Kreuwel F.P.M., Knap W.H., Visser L.R., van Sark, W.G.J.H.M., de Arellano J. V.-G., van Heerwaarden C.C., 2020. Analysis of high frequency photovoltaic solar energy fluctuations. Solar Energy 206: 381-389; doi: 10.1016/j.solener.-2020.05.093

Anvari M., Lohmann G., Wachter M., Milan P., Lorenz E., Heinemann D., Tabar M.R.R., and Peinke J., 2016. Short term fluctuations of wind and solar power systems. New Journal of Physics 18(6): 063027. doi: 10.1088/13672630/18/6/-063027

Jinpeng T., Xiong R., and Shen W., 2019. A review on state of health estimation for lithium ion batteries in photovoltaic systems. ETransportation 2: 100028. doi: 10.1016/j.etran.2019.100028

El Hassani S., Kousksou T., Balan M., Derfoufi S., Moussaoui M.A., and Mezhrab A., 2023 Simulation of a solar lithium bromide-water absorption cooling system in Oujda City of Northeast Morocco. Applied Solar Energy 59.3: 329-342. doi: 10.3103/S0003701X22601594

Uddin K., Gough R., Radcliffe J., Marco J., Jennings P., 2017. Techno-economic analysis of the viability of residential photovoltaic systems using lithium-ion batteries for energy storage in the United Kingdom. Applied Energy 206: 12-21. doi: 10.1016/j.apenergy.2017.08.170

Polo J., Bernardos A., Navarro A.A., Fernandez-Peruchena C.M., Ramirez L., Guisado M.V., Martinez S., 2015. Solar resources and power potential mapping in Vietnam using satellite-derived and GIS-based information. Energy Conversion and Management 98: 348-358. doi: 10.1016/j.enconman.-2015.04.016

Kurpaska S., Knaga J., latala H., Sikora J., and Tomczyk W., 2018. Efficiency of solar radiation conversion in photovoltaic panels. BIO Web of Conferences 10: EDP Sciences. doi: 10.1051/bioconf/20181002014

Ritchie H. and M. Roser., 2024. The price of batteries has declined by 97% in the last three decades. Our World in Data [On-line serial], Retrieved from World Wide Web: https://ourworldindata.org/battery-price-decline.

Hadrien B., Lagadic M., and Louvet N., 2022. The future of lithium-ion batteries: Exploring expert conceptions, market trends, and price scenarios. Energy Research & Social Science 93: 102850; doi: https://doi.org/10.1016/j.erss.2022.102850.