Experimental and Numerical Assessment of the Influence of Heat Trap Assembly on Solar Chimney Performance

Iylia E. Abdul Jamil, Hussain H. Al-Kayiem, Syed I.U. Gilani

Abstract


A big hurdle to using solar chimneys for power generation is their low overall efficiency, which is measured by how effectively energy is converted at different stages of the system. While a taller chimney might help, it is expensive and complex to implement. To address this issue, a new study explored the possibility of using a thermal absorbing assembly at the top of the chimney to increase its efficiency without increasing its height. The study presented both experimental and numerical data on this approach, looking at changes in temperature and heat gains as performance indicators. By adding this low-cost and simple fixture, the study found that the temperature before the chimney outlet increased, and the stack effect was strengthened. The rise of air temperature posed an increase of up to 83.1% by experimental assessment and an increase of 12.75% by numerical assessment with the added fixture of the heat trap.

Keywords


Heat trap assembly; Solar chimney performance; Solar collector; Solar thermal absorption; Solar updraft tower

Full Text:

PDF

References


Weli R.B., Atrooshi S.A. and Schwarze R., 2021. Investigation of the performance parameters of a sloped collector solar chimney model – An adaptation for the North of Iraq. Renewable Energy 176: 504–519. https://doi.org/10.1016/j.renene.2021.05.075.

AL-Bonsrulah H.A.Z., Danook S.H., Alshukri M.J., Ahmed A.M., Raja V., Veeman D., Al-Bahrani M., 2023. CFD modeling of a horizontal wind turbine by utilizing solar nozzle for power production. International Journal of Low-Carbon Technologies 18: 31-37, https://doi.org/10.1093/ijlct/ctac127.

Harte R., Graffmann M. and Krätzig W.B., 2013. Optimization of solar updraft chimneys by nonlinear response analysis. Applied Mechanics and Materials 283: 25–34. https://www.scientific.net/AMM.283.25.

Yapıcı E.Ö., Ayli E. and Nsaif O. 2020. Numerical investigation on the performance of a small scale solar chimney power plant for different geometrical parameters. Journal of Cleaner Production 276. http://dx.doi.org/10.1016/j.jclepro.2020.122908.

Mullett L.B. 1987. The solar chimney-overall efficiency, design and performance. International Journal of Ambient Energy 8(1): 35-40. https://doi.org/10.1080/01430750.1987.9675512

Ganguli A.A. and S. Deshpande, 2020. Three dimensional CFD studies of a solar chimney: effect of geometrical parameters and diurnal variations on power generated. Frontiers in Chemical Engineering 2. https://doi.org/10.3389/fceng.2020.00002.

Bergermann R. and J. Schlaich. 2010. Concept and motivation of solar updraft power technology. In Proceedings of the 2nd International Conference on Solar Chimnet Power Technology, Bochum, Germany, 28-30 September 2010.

Cottam P.J., Duffour P., Lindstrand P. and Fromme P., 2019. Solar chimney power plants – Dimension matching for optimum performance. Energy Conversion Management 194: 112–123. https://doi.org/10.1016/j.enconman.2019.04.074.

Guo P., Li J., Wang Y. and Wang Y. 2015. Numerical study on the performance of a solar chimney power plant. Energy Conversion and Management 105: 197–205.http://dx.doi.org/10.1016/j.enconman.2015.07.072.

Mehranfar S., Gharehghani A., Azizi A., Mahmoudzadeh Andwari A., Pesyridis A. and Jouhara H., 2022. Comparative assessment of innovative methods to improve solar chimney power plant efficiency. Sustainable Energy Technology Assessments 49: 101807. https://doi.org/10.1016/j.seta.2021.101807.

Khidhir D.K. and S.A. Atrooshi. 2019. Investigation of thermal concentration effect in a modified solar chimney. Solar Energy 206: 799–815.https://doi.org/10.1016/j.renene.2021.05.075

Kebabsa H., Said Lounici M., and Daimallah A. 2021. Numerical investigation of a novel tower solar chimney concept. Energy 214: 119048. https://doi.org/10.1016/j.energy.2020.119048.

Saleh M.J., Atallah F.S., Algburi S., and Ahmed O.K., 2023. Enhancement methods of the performance of a solar chimney power plant: Review. Results in Engineering 19: 101375. https://doi.org/10.1016/j.rineng.2023.101375.

Rahimi Larki M., Hosseini R., Rahimzadeh H., and Sarlak H., 2021. Performance analysis of a laboratory-scale tilted solar chimney system exposed to ambient crosswind. Renewable Energy 164: 1156–1170. https://api.semanticscholar.org/CorpusID:228849798.

Pradhan S., Chakraborty R., Mandal D.K., Barman A., and Bose P., 2021. Design and performance analysis of solar chimney power plant (SCPP): A review. Sustainable Energy Technology Assessments 47 (February): 101411. https://doi.org/10.1016/j.seta.2021.101411.

Zhou X., Yang J., Xiao B., and Hou G. 2007. Experimental study of temperature field in a solar chimney power setup. Applied Thermal Engineering 27(11–12): 2044–2050. http://dx.doi.org/10.1016/j.applthermaleng.2006.12.007.

dos S. Bernardes M.A., Voß, A., and Weinrebe G. 2003. Thermal and technical analyses of solar chimneys. Solar Energy 75(6): 511–524. https://doi.org/10.1016/j.solener.2003.09.012.

Ayadi A., Bouabidi A., Driss Z., and Abid M.S., 2018. Experimental and numerical analysis of the collector roof height effect on the solar chimney performance. Renewable Energy 115: 649–662. https://doi.org/10.1016/j.enbuild.2017.01.047.

Ayadi A., Nasraoui H., Bouabidi A., Driss Z., Bsisa M., and Abid M.S., 2018. Effect of the turbulence model on the simulation of the air flow in a solar chimney. International Journal of Thermal Sciences 130: 423–434. https://doi.org/10.1016/j.ijthermalsci.2018.04.038.

Sangi R., Amidpour M., and Hosseinizadeh B., 2011. Modeling and numerical simulation of solar chimney power plants. Solar Energy 85: 829-838. https://api.semanticscholar.org/CorpusID:121100482.

Al-Azawiey S.S., Al-Kayiem H.H., and Hassan S. B., 2016. Investigation on the influnce of collector height on the performance of solar chimney power plant. ARPN Journal of Engineering and Applied Sciences 11(20): 12197–12201. https://www.scopus.com/inward/record.uri?eid=2-s2.0-84994242591&partnerID=40&md5=b3bf2c9e42a6233e6e2e813ff7f7aa83.

Aurybi M.A., Al-Kayiem H.H., Gilani S.I.U., and Ismaeel A.A. 2017. Numerical analysis of solar updraft power plant integrated with external heat source. MATEC Web of Conferences 131: 01004. http://dx.doi.org/10.1051/matecconf/201713101004.

Cottam P.J., Duffour P., Lindstrand P., and Fromme P., 2016. Effect of canopy profile on solar thermal chimney performance. Solar Energy 129: 286–296. https://doi.org/10.1016/j.solener.2016.01.052.

Jamil I.E., Sing C.Y. and Al-Kayiem H.H. 2020. Rudimentary analysis for solar chimney enhancement. IOP Conference Series Material Science and Engineering 863(1): 012063. http://dx.doi.org/10.1088/1757-899X/863/1/012063

Al-Azawiey S.S. and S.B. Hassan. 2016. Heat absorption properties of ground material for solar chimney power plants. International Journal of Energy Production and Management. http://dx.doi.org/10.2495/EQ-1-4-403-418.

Buğutekin A., 2012. An experimental investigation of the effect of periphery height and ground. Journal of Thermal Science and Technology 32(1): 51–58. https://api.semanticscholar.org/CorpusID:173171921.

Abdul Jamil I.E., Al-Kayiem H.H., Al-Azawiey S.S., and Shyaa A.K., 2024. Critical interpretation and analysis to correlate the canopy height to collector diameter ratio for optimized design of solar chimney power plants. International Journal of Renewable Energy Devlopment 13(1): 99–109. https://doi.org/10.14710/ijred.2024.57689.