Halving Global CO2 Emissions by 2050: Technologies and Costs

Lola Vallejo, Christoph Mazur, Alexandre Strapasson, Tim Cockerill, Ajay Gambhir, Tom Hills, Mark Jennings, Owain Jones, Nicole Kalas, James Keirstead, Cheng Khor, Tamaryn Napp, Danlu Tong, Jeremy Woods, Nilay Shah

Abstract


This study provides a whole-systems simulation on how to halve global CO2 emissions by 2050, compared to 2010, with an emphasis on technologies and costs, in order to avoid a dangerous increase in the global mean surface temperature by end the of this century. There still remains uncertainty as to how much a low-carbon energy system costs compared to a high-carbon system. Integrated assessment models (IAMs) show a large range of costs of mitigation towards the 2°C target, with up to an order of magnitude difference between the highest and lowest cost, depending on a number of factors including model structure, technology availability and costs, and the degree of feedback with the wider macro-economy. A simpler analysis potentially serves to highlight where costs fall and to what degree. Here we show that the additional cost of a low-carbon energy system is less than 1% of global GDP more than a system resulting from low mitigation effort. The proposed approach aligns with some previous IAMs and other projections discussed in the paper, whilst also providing a clearer and more detailed view of the world. Achieving this system by 2050, with CO2 emissions of about 15GtCO2, depends heavily on decarbonisation of the electricity sector to around 100gCO2/kWh, as well as on maximising energy efficiency potential across all sectors. This scenario would require a major mitigation effort in all the assessed world regions. However, in order to keep the global mean surface temperature increase below 1.5°C, it would be necessary to achieve net-zero emission by 2050, requiring a much further mitigation effort.

Keywords


Carbon emissions; climate change mitigation; energy economics; energy systems; environmental policy

Full Text:

PDF

References


IPCC – Intergovernmental Panel on Climate Change, 2014. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, and A. Adler], Cambridge University Press.

Van Vuuren D.P., Stehfest E., den Elzen M.G.J., et al., 2011. RCP2.6: Exploring the possibility to keep global mean temperature increase below 2°C. Climate Change 109: 95–116. DOI: 10.1007/s10584-011-0152-3

Pindyck R.S., 2015. The Use and Misuse of Models for Climate Policy. National Bureau of Economic Research’s (NBER) Working Paper no. 21097. Cambridge, MA, USA.

Rosen R.A., 2015. Critical review of: ‘Making or breaking climate targets — The AMPERE study on staged accession scenarios for climate policy’. Technol. Forecast. Soc. Change 96: 322–326. DOI: 10.1016/j.techfore.2015.01.019

Riahi K., Kriegler E., Johnson N., Bertram C., den Elzen M., Schaeffer M., Krey V., Luderer G., et al., 2015. Locked into Copenhagen pledges - Implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technological Forecasting and Social Change 90 (Part A): 8-23. DOI: 10.1016/j.techfore.2013.09.016.

Kriegler E., Petermann N., Krey V., Schwanitz V.J., Luderer G., Ashina S., Bosetti V., Eom J., Kitous A., et al., 2015. Diagnostic indicators for integrated assessment models of climate policy. Technological Forecasting and Social Change 90(Part A): 45-61. DOI: 10.1016/j.techfore.2013.09.020.

IIASA - International Institute for Applied Systems Analysis, 2012. Global Energy Assessment: Toward a Sustainable Future. Cambridge University Press, Cambridge, UK and New York, NY, USA, and IIASA, Laxenburg, Austria.

McCollum D., Nagay Y., Riahi K., Marangoni G., Calvin K., Pietzcker R., van Vliet J., and van der Zwaan B., 2013. Energy investments under climate policy: a comparison of global models. Clim. Change Econ. 4(4): 1340010. DOI: 10.1142/S2010007813400101.

Shah N., Vallejo L., Cockerill T., Gambhir A., Hills T., Jennings M., Jones O., Kalas N., Keirstead J., Khor C., Mazur C., Napp T., Strapasson A., Tong D., and Woods J., 2013. Halving Global CO2 by 2050: Technologies and Costs. Imperial College London, Executive Report. 28p. Retrieved from the World Wide Web: https://bit.ly/2W8cmsX.

Vallejo L., Cockerill T., Gambhir A., Hills T., Jennings M., Jones O., Kalas N., Keirstead J., Khor C., Mazur C., Napp T., Shah N., Strapasson A., Tong D., and Woods J., 2013. Halving Global CO2 by 2050: Technologies and Costs. Imperial College London, Full Report (Executive Report’s Annex). 80p. Retrieved from the World Wide Web: https://bit.ly/2VLOHzC.

Critchley E., 2013. Halving CO2 emissions by 2050: New report says it will cost $2 trillion a year. Imperial College News, 19 September 2013. Retrieved from the World Wide Web: https://www.imperial.ac.uk/news/129889/halving-co2-emissions-2050-new-report/.

Grantham Institute for Climate Change and Energy Futures Lab, 2013a. Launching event “In the balance: Can we halve global CO2 by 2050?” held at Imperial College London, UK, 17th Sep 2013. Retrieved from the World Wide Web: https://www.youtube.com/watch?v=kE_NxnD-3d4.

Grantham Institute for Climate Change and Energy Futures Lab, 2013b. Halving Global CO2 by 2050: Technologies and Costs. Reports, summary and introductory video. Imperial College London. Retrieved from the World Wide Web: https://www.imperial.ac.uk/grantham/publications/mitigation/halving-global-co2-by-2050-technologies-and-costs.php.

Tavoni M., Kriegler E., Riahi K., et al., 2014. Post-2020 climate agreements in the major economies assessed in the light of global models. Nat. Clim. Chang 5: 119–126. DOI: 10.1038/nclimate2475

Akimoto K., Sano F., Homma T., Oda J., Nagashima M., and Kii M., 2010. Estimates of GHG emission reduction potential by country, sector, and cost. Energy Policy 38: 3384–3393. DOI: 10.1016/j.enpol.2010.02.012

Hoogwijk M., Can S.R., Novikova A., Urge-Vorsatz D., Blomen E., and Blok K., 2010. Assessment of bottom-up sectoral and regional mitigation potentials. Energy Policy 38(6): 3044–3057. DOI: 10.1016/j.enpol.2010.01.045

IEA, 2010. Energy Technology Perspectives 2010: Scenarios & Strategies to 2050. Technical report. Paris, France.

Matthews H.D., Landry J.S., Partanen A.I., Allen M., Eby M., Forster P.M., Friedlingstein P., and Zickfeld K., 2017. Estimating carbon budgets for ambitious climate targets. Curr. Clim. Change Rep. 3: 69–77. DOI: 10.1007/s40641-017-0055-0

IEA, 2020. Global Energy Review: The impacts of the COVID-19 crisis on global energy demand and CO2 emissions. Technical l Report. Paris.

Strapasson A., Woods J., Chum H., Kalas N., Shah N., and Rosillo-Calle F., 2017. On the global limits of bioenergy and land use for climate change mitigation. Global Change Biology Bioenergy 9(12): 1721-1735. DOI: 10.1111/gcbb.12456

Smith P., Bustamante M., Ahammad H., et al., 2014. Chapter 11: Agriculture, Forestry and Other Land Use (AFOLU). In Climate Change 2014: Mitigation of Climate Change [eds Edenhofer O., Pichs-Madruga R., Sokona Y. et al.]. IPCC 5th Assessment Report, Working Group III, Cambridge University Press, Cambridge, UK.

UN – United Nations, 2010. World Population Prospects: The 2010 Revision, Volume I: Comprehensive Tables. Report. New York, USA. 503p.

World Bank, 2012. World Databank: World Development Indicators (WDI). Retrieved from the World Wide Web: http://databank.worldbank.org.

IEA, 2014. Energy Technology Perspectives 2014: Harnessing Electricity’s Potential. Technical report. Paris, France.

Strapasson A. and M.T.W. Fagá, 2007. Energy efficiency and heat generation an integrated analysis of the Brazilian energy mix. International Energy Journal 8(3): 171-180.

IEA, 2009. Tracking Industrial Energy Efficiency and CO2 Emissions. Technical report. Paris, France.

Zhang R. and S. Fujimori, 2020. The role of transport electrification in global climate change mitigation scenarios. Environmental Research Letters 15(3): 034019. DOI: 10.1088/1748-9326/ab6658.

Akashi O., Hanaoka T., Masui T., and Kainuma M., 2014. Halving global GHG emissions by 2050 without depending on nuclear and CCS. Climatic Change 123: 611-622. DOI: 10.1007/s10584-013-0942-x

Kavlak G., McNerney J., and Trancik J.E., 2018. Evaluating the causes of cost reduction in photovoltaic modules. Energy Policy 123: 700-710. DOI: 10.1016/j.enpol.2018.08.015

Rogelj J., Shindell D., Jiang K., Fifita S., Forster P., Ginzburg V., Handa C., Kheshgi H., Kobayashi S., Kriegler E., Mundaca L., Séférian R., and Vilariño M.V., 2018. Chapter 2: Mitigation Pathways Compatible with 1.5°C in the Context of Sustainable Development. In: Global Warming of 1.5°C. An IPCC Special Report on 1.5°C [Masson-Delmotte, V. et al. (eds.)]. IPCC Report. Geneva.

Strapasson A., Woods J., Pérez-Cirera V., Elizondo, A., Cruz-Cano D., Pestiaux J., Cornet M., and Chaturvedi R., 2020. Energy Strategy Reviews 29: 100494. DOI: 10.1016/j.esr.2020.100494

Kaya Y., Yamaguchi M., and Geden O., 2019. Towards net zero CO2 emissions without relying on massive carbon dioxide removal. Sustainability Science 14: 1739–1743. DOI: 10.1007/s11625-019-00680-1

Davis S.J., Lewis N.S., Shaner M., et al., 2018. Net-zero emissions energy systems. Science 360(6396): eaas9793. DOI: 10.1126/science.aas9793