Turning Water Hyacinth into Bioenergy: Briquettes with Torrefied Cassava Rhizomes

Nitipong Soponpongpipat, Paisan Comsawang

Abstract


This study investigates the feasibility of converting fresh water hyacinth (Eichhornia crassipes), a widely recognized invasive aquatic weed, into community-scale bioenergy through briquetting with torrefied cassava rhizomes (TCR). The novelty of this work lies in applying torrefied agricultural residues not only as an energy enhancer but also as a natural preservative to suppress microbial degradation of water hyacinth during storage. A simulated storage system was developed with mixing ratios of 10%, 15%, and 20% TCR by weight, monitored over eight weeks. Key performance indicators—including odor suppression, textural stability, bulk density, and higher heating value (HHV)—were evaluated. Results showed that blending with ≥10% TCR effectively reduced foul odor and structural decomposition. Bulk density increased by approximately 30% for TCR10% and TCR15% formulations, while HHVs remained stable (17.6–20.7 MJ·kg⁻¹), closely matching theoretical predictions. Compared to previous biomass densification studies, the present approach demonstrated superior stability during storage with minimal energy losses. These findings highlight a practical and low-cost strategy for producing renewable briquettes, offering both environmental benefits through aquatic weed management and economic value for rural communities.


Keywords


Biomass briquette; bulk density; renewable energy; torrefied cassava rhizome; water hyacinth

Full Text:

PDF

References


Harun I., Pushiri H., Amirul-Aiman A.J., and Zulkeflee Z., 2021. Invasive water hyacinth: Ecology, impacts and prospects for the rural economy. Plants 10(8): 1613.

Enyew B.G., Assefa W.W., and Gezie A., 2020. Socioeconomic effects of water hyacinth (Eichhornia crassipes) in Lake Tana, North Western Ethiopia. PLOS ONE 15(9): e0237668, doi: 10.1371/journal.pone.0237668.

Ndimele P.E., 2012. The effects of water hyacinth (Eichhornia crassipes) infestation on the physico-chemistry, nutrient and heavy metal content of Badagry Creek and Ologe Lagoon, Lagos, Nigeria. J. Environ. Sci. Technol. 5: 128–136, doi: 10.3923/jest.2012.128.136.

Chukwuka K.S. and U.N. Uka. 2007. Effect of water hyacinth (Eichornia crassippes) infestation on zooplankton populations in Awba reservoir, Ibadan South-West Nigeria. J. Biol. Sci. 7: 865–869.

Ndimele P.E. and A.A. Jimoh. 2011. Water hyacinth (Eichhornia crassipes (Mart.) Solms.) in phytoremediation of heavy metal polluted water of Ologe Lagoon, Lagos, Nigeria. Res. J. Environ. Sci. 5: 424–433.

Ganguly A., Chatterjee P.K., and Dey A., 2012. Studies on ethanol production from water hyacinth-A review. Renew. Sustain. Energy Rev. 16: 966-972.

Rezania S., Md Din M.F., Kamaruddin S.F., Taib S.M., Singh L., Yong E.L., and Dahalan F.A., 2016. Evaluation of water hyacinth (Eichhornia crassipes) as a potential raw material source for briquette production. Energy 111: 768–773.

Mibulo T., Nsubuga D., Kabenge I., and Wydra K.D., 2023. Characterization of briquettes developed from banana peels, pineapple peels and water hyacinth. Energy, Sustainability and Society 13(1); Art. 36.

Zhang X., Cai Z., Chen L., Zhang D., and Zhang Z., 2016. Effects of moisture content and temperature on the quality of water hyacinth pellets. BioResources 11(1): 1407–1416.

Saputra A.H. and R.A. Putri. 2017. The determination of optimum condition in water hyacinth drying process by mixed adsorption drying method and modified fly ash as an adsorbent. AIP Conf. Proc., 1840: 100005, doi: 10.1063/1.4982322.

Wathore R., Hamdan A., Badki P., Bherwani H., Gupta A., and Labhasetwar N., 2025. Sustainable fuel production from water hyacinth: evaluation for cooking applications and resource mapping. Biomass Convers. Biorefinery 15: 13733–13750, doi: 10.1007/s13399-024-06186-w.

Casas E.V., Raquid J.G., Yaptenco K.F., and Peralta E.K., 2012. Optimized drying parameters of water hyacinths (Eichhornia crassipes. L). Science Diliman 24(2): 28–49.

Effendi A., Gerhauser H., and Bridgwater T., 2008. Production of renewable phenolic resins by thermochemical conversion of biomass: A review. Renew. Sustain. Energy Rev. 12: 2092–2116, doi: 10.1016/j.rser.2007.04.008.

Tong Y., Yang T., Wang J., Li B., Zhai Y., and Li R., 2024. A review on the overall process of lignin to phenolic compounds for chemicals and fuels: From separation and extraction of lignin to transformation. J. Anal. Appl. Pyrolysis 181: Art. 106663, doi: 10.1016/j.jaap.2024.106663.

Hu B., Zhang Z.-X., Xie W.-L., Liu J., Li Y., Zhang W.-M., Fu H., and Lu Q., 2022. Advances on the fast pyrolysis of biomass for the selective preparation of phenolic compounds. Fuel Process. Technol., 237: Art. 107465, doi: 10.1016/j.fuproc.2022.107465.

Ecevit K., Barros A.A., Silva J.M., and Reis R.L., 2022. Preventing microbial infections with natural phenolic compounds. Future Pharmacol. 2(4): 460–498, doi: 10.3390/futurepharmacol2040030.

Veiga J.P.S., Valle T.L., Feltran J.C., and Bizzo W.A., 2016. Characterization and productivity of cassava waste and its use as an energy source. Renew. Energy 93: 691–699, doi: 10.1016/j.renene.2016.02.078.

Nizzy A.M. and S. Kannan. 2022. A review on the conversion of cassava wastes into value-added products towards a sustainable environment. Environ. Sci. Pollut. Res. Int. 29(46): 69223–69240.

Jongpluempiti J. and K. Tangchaichit. 2011. Comparison proximate analysis and heating value between cassava rhizome and perennial wood. Adv. Mater. Res. 415–417: 1693–1696, doi: 10.4028/www.scientific.net/AMR.415-417.1693

Soponpongpipat N., Nanetoe S., and Comsawang P., 2020. Thermal degradation of cassava rhizome in thermosyphon-fixed bed torrefaction reactor. Processes 8(3): 267, https://doi.org/10.3390/pr8030267

Singhal P.K., Gaur S., and Talegaonkar L., 1992. Relative contribution of different decay processes to the decomposition of Eichhornia crassipes (Mart.) Solms. Aquat. Bot. 42(3): 265–272, doi: 10.1016/0304-3770(92)90027-G.

Intagun W., Soponpongpipat N., and Kanoksilapatham W., 2023. Fermented cassava-rhizome residue as a biomass pellet binding additive influenced by multi-bacterial biofilm. Int. Energy J. 23: 219–228.

Anukam A., Berghel J., Henrikson G., Frodeson S., and Ståhl M., 2021. A review of the mechanism of bonding in densified biomass pellets. Renew. Sustain. Energy Rev. 148: 111249, doi: 10.1016/j.rser.2021.111249.

Butler J.W., Skrivan W., and Lotfi S., 2023. Identification of optimal binders for torrefied biomass pellets. Energies16(8): 3390.

Yank A., Ngadi M., and Kok R., 2016. Physical properties of rice husk and bran briquettes under low pressure densification for rural applications. Biomass Bioenergy 84: 22–30.

Portilho G.R., de Castro V.R., Carneiro A.de C.O., Zanuncio J.C., Zanuncio A.J.V., Surdi P.G., Gominho J., and Araújo S.de O., 2020. Potential of briquette produced with torrefied agroforestry biomass to generate energy. Forests 11(12): 1272,

Civanlar S., Grainger J.J., Yin H., and Lee S.S.H., 1988. Distribution feeder reconfiguration for loss reduction. IEEE Trans. Power Del. 3: 1217–1223.




DOI: https://doi.org/10.64289/iej.25.03A11.4327583