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ABSTRACT

In deregulated power systems, the classic economic dispatch has been replaced with the
auction-based dispatch in which both the generating units and loads participate. Instead of constant
load demand in the classic economic dispatch, the loads are variables in the new dispatch. As a
result, the conventional economic dispatch algorithms no longer can be applied. In this paper we
reformulate the auction-based dispatch into a general minimization problem so that the loads can
be treated as variables similar to the generations. Based on this new reformulation, efficient algorithms
to solve the auction-based dispatch problem are proposed. The first algorithm solves the dispatch
problem in which the objective function contains only quadratic bidding functions. Since some
loads might submit linear incremental bidding functions, a second algorithm is developed to handle
the situation where the objective function contains both quadratic and linear incremental bidding
functions. At the end, we demonstrate the efficiency of our algorithms through examples.

1. INTRODUCTION

In the vertically regulated power systems, the economic dispatch is used to decide the
generation amount among various generating units. The purpose of the classic economic dispatch is
to minimize the total production cost with the total generations satisfying the demand and each
generating unit within its capacity limits [1-3]. In the deregulated power systems, energy is procured
through either bilateral contracts in a bilateral model market or a central auction in a poolco model
market. To maintain the balance between supply and demand, efficient auction-based dispatch needs
to be run frequently [4]. That calls for new and effective auction-based algorithms to solve this

emerging market dispatch problem.

Both the economic dispatch and auction-based dispatch are primarily aimed to achieve economic
efficiency. But, unlike the classic economic dispatch problem that has fixed demand, the auction-based
dispatch in the deregulated power systems has elastic demand. In other words, both generators and
loads participate in the auction. Some loads need not be covered fully and are called as responsive
loads [5]. Another distinct feature for the auction-based dispatch problem is that classic economic
dispatch is aimed at minimizing the total generation costs, whose costs are formulated as convex and
quadratic; while the auction-based dispatch usually is to maximize the social welfare, i.e., the difference
between the bidding functions of the generations and the bidding functions of the loads [6]. Besides
convex quadratic bidding curves, concave quadratic and linear incremental bidding curves also occur
in the auction-based dispatch [4]. The auction-based dispatch problem has the following distinct
mathematical properties:

. Instead of constant loads in the classic economic dispatch, loads have become variables and the
bidding functions of the loads have to be considered.
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e  Besides quadratic terms, the objective function might include linear incremental terms whereas
the objective function of the classic economic dispatch contains only quadratic terms.

. Those variables with linear incremental bidding functions do not appear in the first order differential
equations of the Kuhn-Tucker conditions. As a result, the equal incremental cost approach,
which is the basis of the classic economic dispatch, will not have sufficient equations to solve
the variables. Thus new methods need to be developed for such situations.

This work is focused on developing algorithms for the auction-based dispatch problem. We
first reformulate the auction-based dispatch as a general minimization problem so that both generations
and loads can be handled in the same way, which prepares the ground for efficiently solving the
dispatch problem. Then an algorithm to solve the auction-based dispatch problem with only quadratic
bidding functions is proposed. To handle the cases with both quadratic and linear incremental bidding
functions, a second algorithm is developed. These two algorithms can find the optimal solution to the
auction-based dispatch problem efficiently by a finite number of iterations. These iterations involve
only simple algebraic calculations.

The paper is organized as follows: the auction-based dispatch problem is defined in section
2 along with the reformulation of the problem. The corresponding optimality conditions, namely the
necessary and sufficient conditions, are also provided in this section. Then a dispatch algorithm with
only quadratic bidding functions is introduced in section 3. The algorithm that deals with both quadratic
and linear incremental bidding functions is presented in section 4. Finally several numerical examples
are given in section 5 to demonstrate these two algorithms.

2. THE AUCTION-BASED DISPATCH
2.1 Formulation

In the operation of a vertically integrated power system, loads are supposed to be covered
fully and generations are distributed among units by an economic dispatch program. The objective of
the economic dispatch is to achieve a power balance between supply and demand with the least cost.

In a deregulated power system, the procurement of the energy is dependent on the market
models. There are two principal market models in current deregulated power systems, namely the
bilateral model and the poolco model. In a bilateral market, the generating units and loads enter into
direct negotiation to decide the power quantities and prices. In a poolco market, the amounts of
generations and loads are determined by the auction-based dispatch that basically is an optimization
problem that deals with the supply and demand of power. Therefore the auction-based dispatch in a
power market should be conducted based on the principles of supply and demand. A typical formulation
of the auction-based dispatch in a deregulated environment is shown as below [4].

Objective:

| m
Max f=|> D;(R)-> Ci(Ps) 0
j=1 i=1
Subject to:
|

szi - Pij =0 )
i=1

j=1
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Psimin < Pai < Paimax i=1..,m 3)
Pimin < Pj < Pjmax J=1.. 4)
where, B = Real power amount of j th load,
Pimax:PBjmn = Maximum and minimum requirements of j th load,
Psi = Real power amount of j th generator,
PoimaxsPaimin = Real power limits of j th generator,
i = Number of loads,
m = Number of generators,
D;(R;) = Bidding function of j th load, and
Ci(Ps) = Bidding function of generator.

The objective function is the bidding cost difference between the loads and generators. In
other words, the auction-based dispatch is to maximize the social welfare.

Generally, a quadratic function with positive coefficients is used to approximate the cost
function of a generator [4, 6]. Therefore the bidding functions of generators have the following form:

Ci (P )=dg PGZi +e6iPei + fai (dg >0,e5 >0, fg >0) (5)

We can see that these bidding functions are convex.

Like generators, a quadratic function is adopted to represent a load’s bid. From the theory of
economics [7], we know that the differentials of the bidding curves of generators and loads are
essentially supply and demand curves respectively. Thus the demand curve of the load is a linear
function. In terms of the law of demand, we can know that usually the power quantity demanded is
inversely related to the price, i.e., marginal cost. That means the demand curve has a negative slope.
Some loads might have a perfectly elastic demand, i.e., a zero slope for the demand curve. Therefore
the general form for the bidding functions of loads can be given as follows:

D;(P;)=d;P?+eP +f; (dj<0, >0) (6)
In the above equation, dj; =0 means the corresponding load has a perfectly elastic demand.
Eq. (6) implies besides concave quadratic bidding functions, loads can also submit linear incremental
bidding functions.
It can be proved that with this formulation, the dispatch is run at the equilibrium point of the
market supply and demand curves.
From the above formulation, we can see that the auction-based dispatch is more complicated
than the classic economic dispatch in the following aspects:
e  Loads no longer need to be covered completely.
. Since loads are variables now, the total amount of generations becomes uncertain.
. The objective function is not a simple summation of cost functions of generators. It becomes the
difference of bidding costs between the loads and generations. In addition to quadratic bidding
curves, linear incremental bidding curves are also involved in the objective function.
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2.2 Reformulation of the Problem
In terms of the properties of the bidding functions of generators and loads, we can modify our

formulation so that the auction-based dispatch can be solved efficiently.
First, we modify the objective function.

m |
(H)=Min F=-f=3 C(Py)- D(P)
j=1

i=1
m | 7
:zci(PGi)+2(_Dj(Pij )) @
i=1 j=1
Then let PijNew = _Pij .

With these two changes, we can reformulate the auction-based dispatch problem as a general
minimum optimal problem:

Objective:
n n
Min F:ZBi(xi):Z(aixi2+bixi+ci) )
i=1 i=1
Subject to:
n
X, =0 9)
i=1
Ximin le lemax |:1,,n (10)
where, X = Pg or PijNeW,
B, = represents the bidding function of or, and
n = the number of and is equal to , the total number of generators and loads.

After the reformulation, a term of the objective function, is a convex quadratic function with
a; > 0 ora linear incremental function with &, = 0. % =0 ifthis variable represents a generator while
X <0 if it corresponds to a load.

2.3 Optimality Conditions

The necessary conditions for the problem (8 - 10) can be easily got based on the Kuhn-
Tucker conditions [8 - 10]:

[dB,
d—Xi'=/l for  Ximin <X <X max
? <A for X =X max
N (1)
dB

—2A4 for X =Xmin
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where, 1 = the Lagrange multiplier.

The above conditions are also the sufficient conditions as the objective function is convex
and the constraints are linear.

3. AN ALGORITHM TO SOLVE THE AUCTION-BASED DISPATCH WITH
QUADRATIC BIDDING FUNCTIONS

In this section we will develop an algorithm to solve the auction-based dispatch problem
(1-4) by assuming all bidding functions are quadratic functions. For the case that includes both
quadratic and linear incremental curves, the solution can be found in the section 4. To make the

m | | m
problem (1-4) meaningful, we assume Z Pai min < Z Plimac and Z PLimin < Z Peimax . Otherwise
i=1 j=1 j=1 i=1

there would be no solution.
Algorithm

1)  Rewrite the auction problem (1 - 4) into an optimization problem (8 - 10).
2) DefineM =@ and t =0.

3)  Get A andall variables X, (i ¢ M) according to (12, 13).

b
t+)
_ =y 23,
L (12)
~ 23
A-b .
X = oa L i=1..,nk (13)

(where a; > 0(i =1,...,nk) and nk is the number of variables X (i ¢ M) .)
4)  Ifall x,(ie¢ M) are within the limits, go to 7). Otherwise, if Xj > Xjmax » S€t X; t0 Xjmax ; If Xi < X{ min »

set X to X;min -

5) LetS:ZXi

igM
e IfS=t 0r|S—t|S€,(5 is a specified small number), go to 7).
o IfS>t,let L=f|X =XmnieM}jandM =M UL.
o IfS<t,letU={|X =Xmaoie MfandM =M LU .

6 t= —Z X; . Go backto 3).

ieM

7)  Convert xback into P, P, . Print the result and stop.
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Egs. (12, 13) are obtained by using the necessary conditions (11) with the assumption that all
variables X; (i ¢ M) are within the limits.

In step 4), if all the variables Xx;(i¢ M) obtained by (13) do not violate the limits, which

means they satisfy the necessary conditions (11) and the solution is optimal. If some variables violate
the limits, we fix these variables at their violated upper or lower limits. Based on the knowledge that

9B _ 2a,% +hy (&g > 0)for every variable x;, we know that these variables with the new values

dx;

satisfy the necessary conditions. If the equality constraint, i.e., S= z X; =1, is also satisfied, then
igM

we can claim the solution is optimal. If the equality constraint does not hold, we will make an adjustment

in step 5) by comparing S and t. Suppose S>t. Then we know that

e Thecurrent 4 isbigger than Ayyiny, » the optimal solution. We can prove this by contradiction.

Suppose loptima] is bigger than A . For the optimal solution, Sgptima = z Xioptimal =1 . Since
igM

a; >0@g M) in (13), the assumption Agpima > 4 implies that Xioptima = X (i€ M) (They

might be equal if X;is at the limit and (13) can not be applied). Therefore we can get

Soptimal = z Xioptimal 2 z X; =S. On the other hand S>t. That implies Sepima is larger than
igM igM

t instead of equal to 7, which means our assumption is wrong and Agpima can only be smaller

than 4 .

. Based on the conclusion that the current A is too big and (13), those variables at the lower limits
in this iteration must also be at the lower limits for the final optimal solution. In other words, the
variables at the set L = ﬂxi =Ximin 1€ M }will remain at the lower limits in the future steps.

. The set L is not empty. From step 3), the sum of the variables not belonging to set M is equal
tot . Step 4) makes an adjustment, by decreasing those violating the upper limits to their upper

limits and increasing those violating the lower limits to their lower limits. If L is empty, that
implies no variable is increased. As a result, the sum of the variables after the adjustment,

namely S, is not larger than the sum before the adjustment, namely t. That contradicts the
condition S>t.Therefore the set L cannot be empty and we fix at least one more variable to the

lower limits when S>t.
e Accordingly, fixing the lower limits will increase the sum of the corresponding variables. To
maintain the same total amount t, the sum of the other variables not in set M has to decrease.

Then by (13), A, in the next iteration must decrease; and thus A, is smaller than A ey , the

dB;
current 4. Those variables fixed at the lower limits have ' - 2 Aeurrent , we can
1

dB
conclude 4dx<l > Anew . As a consequence, the necessary conditions (11) are still satisfied for
1

these variables. Accordingly, these variables remain fixed at the lower limits in the new iteration.
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e  Some more conclusions can be drawn based on the same logic. If the first iteration only violates
lower limits, we will have S>1 after fixing the lower limits. The above analysis tells us when the
lower limits are fixed, the remaining variables have to decrease and the Lagrange multiplier A will
decrease. That implies no new upper limit violations will be created. In the meantime, A will keep
decreasing until the optimal one. Similar arguments can apply to the case that only upper limits
are violated. However, if the first iteration violates both lower and upper limits and S >t , then we
might still need to fix the upper limits after fixing the lower limits. For the case that both upper and
lower limits are violated and suppose that it begins with S>t, we repeat fixing the lower limits
until iteration h, which has An < Agpimal or S;, <t;,. Then we should fix the upper limits. After
that, ﬂ(h +1), the Lagrange multiplier in the following iteration, is greater than 4, . But ﬂ(hﬂ) will
not be bigger than Ay, ), the Lagrange multiplier in iteration (h—1) . That is A < Ahsny <Ay -
These conclusions can be proved by contradiction. We can further prove that even though the
process of fixing the upper limits may involve more than one iteration and the A keeps increasing,
the biggest Lagrange multiplier will not be larger than Ay, ). After fixing the upper limits, we
might need to fix the lower limits again. Again, it is easy to prove that the new A will locate
between the previous two values, one of which is bigger than Agpyim , the other is less. In other
words, A4 oscillates around but gets closer to the optimal one. Eventually it settles at the optimal
value.

e  Similar conclusions can apply to S< t. The above analysis implies that our algorithm, by fixing
the lower or upper limits, will make the Lagrange multiplier A approach and finally settle at the
optimal one. And the variables that are fixed at the lower or upper limits will remain fixed during
the future iterations.

As a summary, before the optimal solution is obtained, during each iteration from steps 3) to
6), at least one more variable will be fixed at either the upper limit or the lower limit; and the fixed ones
will remain fixed during future iterations. As there are only nvariables, the optimal solution will be
obtained with at most iterations. The iteration only involves simple algebraic calculations (See (12, 13))
and the number of variables participating in (12, 13) is decreasing. Therefore this algorithm is very
efficient.

4. AN ALGORITHM TO SOLVE THE AUCTION-BASED DISPATCH WITH
BOTH QUADRATIC AND LINEAR INCREMENTAL BIDDING FUNCTIONS

Besides quadratic bidding curves, loads can have linear incremental bidding curves
with D; (B ) =d;; Pijz +e; B+ f; (dj =0,e; >0).Here we assume that these €; are different. (If
some €j are identical, we can combine the corresponding variables together.) By the necessary
conditions (11), we know that variables with linear incremental bidding curves will have at most one
variable within the limits; and others either at the upper or the lower limits.

We define Z as the set whose variables only have linear incremental bidding curves and set
Y that contains variables with quadratic bidding curves. Hence we can solve A in (12) by the following
equation.
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b b

A=lim H; %4 +§ 2
a— 1 1
2£+25

ieY ez

ieY 1 iez

a2$+z

iey 71

a—

2.h
_ ez

z

(14

In the above equation, z refers to the number of variables in set Z and Y is the number of

variables insetY .

Based on the above information, we develop an algorithm for the auction-based dispatch

problem including both quadratic and linear incremental bidding curves.

)
2)
3)

4

3)

Rewrite the auction problem (1 - 4) into an optimization problem (8 - 10).
DefineM = and t =0.
Get A according to (14) for all variables in sets Z,Y .

For the variables in Z , if 4 > Iy , set the corresponding X; to X; . ; if 4 < by, set the corresponding
to X, t0 Ximin .
For the variables in Y, calculate x; in terms of the following equation

A-b
== lieY) (15)

X

If X > Ximax » s€t the corresponding X, t0 X; yax s If X < Xi i -s€t the corresponding X; t0 X;q -

imin >
Otherwise, X; remains the same value, i.e., still within the limits.

IfA#1b forallic Z thenlet S= Y X +» X .

iez ieY
o IfS=t or|S—t| <&, (¢ isaspecified small number), go to 10).
o IfS>t,let L={[i-h <0ieZjandZ=Z-L.
o IfS<t,letU={[i-h>0ieZfandZ=Z-U.



International Energy Journal: Vol. 6, No. 1, Part 2, June 2005 2-169

If A=b(ke Z),then S= Y %+ X

ieZ,izk ieY
o IfS+Xgmin STS S+ Xy max let X, =t—S. Goto 10).
o IfS+Xmn >t,Let L={[1-b <0jiecZ}andz=7 L.
o IfS+Xyma <t,letU={]2-b >0jieZ}andz=2-U .

7 If S>t(or S+ X min >1), setthe variables in L to the lower limits and let M = M U L. Otherwise,

set the variables in U to the upper limits and M =M UU .

g t=-) %.

ieM
9 Ifz # @, go back to 3). Otherwise, employ “the algorithm for the auction-based dispatch with
quadratic bidding functions” to get the solution for variables in setY .

10) Convert x back into P, P_ . Print the result and stop.

This algorithm smartly seeks the solution that satisfies the optimality conditions.

Notice that in the above algorithm set Z is changing during the iterations. Here we use z;to
represent the initial number of variables in Z . Suppose initially Iy <b, <---<b, forsetZ .Evidently

Aoptimal » the 4 of the necessary conditions (11) can only be one of the 3 possibilities, i.e., ﬂopﬁm > bZO ,
bz0 2 loptima] 2 bl or loptima] < bl

We first get 1 by (14). Obviously, b, > A>b; . Assume A = b, forallie Z.(IfA=Db, (ke Z),
we can handle it in a similar way.) In step 6), if S=t, the results are the optimal solution as the
necessary conditions are satisfied. Otherwise, S#t , which means A # ﬂopﬁm . Then we need to
decide whether to increase A or decrease 4. If S>t, increasing A might lead to some variables in

Z changing from the lower limits to the upper limits with other variables unchanged. Meanwhile all
variables in Y will increase by using (15). After we fix the upper and lower limits for setY , the sum of
set Y is still bigger than the previous value. As a result, Swill become larger if we increase A . That
implies we need a smaller A . To decrease 1, welet Z=Z7 — L, i.e., we remove variables with b, > 1.
Hence the new A by Eq. (14) will become smaller. If S<t, we can deal with Z by removing variables
withb, < 1.

Initially the number of variables in Z is z; . Before the optimal solution is obtained, during
each iteration from steps 3) to 8), at least one more variable in Z will be fixed at the limit and removed
from Z . Then based on (14), we can find out whether the Aqpima is within or beyond b (i =1,..., Z) with
at most Z, iterations. And each iteration just involves simple algebraic calculations.

If the Agpima is located between by (i=1...,2y) , i.e., b, > Agyima =Dy, steps 1) ~ 8) can
solve the problem with at most z;, iterations. If Agyimg is beyond by (i =1...,25) , we need to resort
to the algorithm developed in section 3 to get the solution for the variables in set Y , namely variables
with quadratic bidding functions. From the analysis in the preceding section, we can know that it will
take at most y iterations to find out the optimal solution for them. Therefore, totally it will take at most

(zy +y) iterations for our algorithm to get the optimal solution of the auction-based dispatch with
both quadratic and linear incremental bidding functions.
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5. NUMERICAL EXAMPLES

The proposed algorithms will be tested on some numerical examples. We will first consider
cases with quadratic bidding functions only. Then we will include linear incremental bidding functions
in the auction-based dispatch.
5.1 Quadratic Bidding Functions Only

Case I:

Table 1 Data of generators and loads

Type Bidding data ($/h) Limits (MW)
1 | Generator 0.01PZ +12Pg, +300 [50, 500]
2 | Generator 0.012P2, + 6P, +400 [100, 500]
3 Load -0.016P2 +35P,; [0, 400]
4 Load —0.017P% +34P,, [0, 700]

By applying the algorithm for the auction-based dispatch with quadratic bidding functions,
we first get the solution of the optimization problem (8 - 10) as:

X =[344.44 500 —400 -—444.44]
A=[19.3250 185830 18.8839

It is noted that:
e  The negative signs are for load variables.

e  The optimization problem (8 - 10) is solved by 3 iterations. Thus the A has three values. And the
value of oscillates and converges to the optimal value.
e  The solution satisfies the optimality conditions.

And similar conclusions can be made for the following cases.

After converting the above solution back to generations and loads, we can obtain the solution
to the auction problem (1 - 4) as follows:

P, =[344.44 500(MW)
P =[400 444.44 MW)

It can be seen that generator 2 and load 1 hit the upper limits while others are within the limits.
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Case 2:

Table 2 Data of generators and loads

Type Bidding data ($/h) | Limits(MW)
1 | Generator | 0.01R% +12Pg; +300 [50, 200]
2 | Generator | 0.011P%, +13P, + 400 [100, 310Q]
3 | Generator | 0.009PZ; +11P;,+300 | [50, 400]
4 | Generator | 0.0095P2, +14P;, +400 | [100, 300]
5 | Generator | 0.05RZ +15P;5 +300 [50, 200]
6 | Generator | 0013P% + 6Py, +400 [100, 550]
7 Load -0.03P3 +10P; [0, 300]
8 Load -0.017P% +35R,, [0, 500]
9 Load —0.015P3 +35P 4 [0, 600]
10| Load -0.018R% +33P , [0, 700]
11| Load —0.0182P% +37P 5 [0, 400]

The solution of the problem (8 - 10) is:

~|200 294.1314 400 287.9416 50 5181112
|0 —456.7385 -517.6370 —375.8086

A =[18.6561 19.7992 19.4709]

—-400

2-171

The above results show that though there are more variables than case 1, case 2 takes the
same number of iterations to find the optimal solution.
Based on the above solution to the optimization problem (8 - 10), we can easily get the

solution of the auction problem (1 - 4):

P, =[200 294.1314 400 287.9416 50 518.1112 [MW)

P, =[0 456.7385 517.6370 375.8086 400 [MW)

Generators 1 and 3 hit the upper limits while generator 5 hits the lower limit. Load 5 is at the
upper limit and load 1 is at the lower limit.
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5.2 With Quadratic and Linear Incremental Bidding Functions
Case I:

Table 3 Data of generators and loads

Type Bidding data(%h) | Limits(MW)

1 | Generator | 0.01R% +12P;; +300 [0, 400]
2 | Generator | 0.015PZ, + 6P, + 400 [0, 300]
3| Load 3R, [0, 300]
4| Load 3R, [0, 500]

By implementing the algorithm for the auction-based dispatch with both quadratic and linear
incremental bidding functions, we first get the solution of the problem (8 - 10):

x=[400 300 —-200 -500]
A=[345 34]

In this case, only 2 iterations are needed for finding the optimal solution. Hence, the solution
to the auction problem (1 - 4) is:

Ps = [400 300fMW)
P, =[200 500 MW)

And it can be seen that load 2 is at the upper limit whereas load 1 is within the limits. This is
expected as the bidding cost of load 2 is always higher than that of load 1, load 1 cannot get any power
unless load 2 is fully supplied.

Case 2:

Table 4 Data of generators and loads

Type Bidding data ($/h) | Limits(MW)
1 | Generator | 0.01R% +12P;, +300 [0, 400]
2 | Generator | 0.015PZ2, + 6P, +400 [0, 300]
3 | Generator | 0.011R% +11R;; +300 [0, 400]
4 | Generator | 0.013R%, +13P;, +400 [0, 300]
5| Load 4R, [0, 300]
6| Load 35P,, [0, 200]
7 Load 33R 5 [0, 300]
8| Load 36R , [0, 200]
9 Load 37P.5 [0, 100]
10 Load —0.03P% + 25P ¢ [0, 150]
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Again, by using the algorithm for the auction-based dispatch with both quadratic and linear
incremental bidding functions, we can get the solution of the problem (8 - 10):

3352554 300 350.2322 219.4272
~300 -200 -300 —200 -100 —104.9149
A=[35 335 33 18.0336 18.7051]

From the values of the A , we know that actually the algorithm in section 3, i.e., the one for the
auction-based dispatch with quadratic bidding functions, is also involved in the process. It first takes
3 iterations to judge the location of Aqyimg - After finding out that Agyiny is smaller than the marginal
costs of the variables with linear incremental bidding curves, we employ the algorithm in section 3 with
2 more iterations to find the solution. Therefore, in total, it takes 5 iterations to obtain the optimal
solution.

The solution of the auction problem (1 - 4) is:

P, =[335.2554 300 350.2322 219.4272(MW)
P.=[300 200 300 200 100 104.9149(MW)

The above answer indicates that loads 1 to 5 hit the upper limits while load 6 is within its
limits. The reason is that the bidding costs of loads 1 to 5 are so high that they should be covered first
before load 6 can be supplied.

6. CONCLUSIONS

This paper develops the auction-based dispatch algorithms in the deregulated power systems.
With appropriate formulations, two algorithms solving the auction-based dispatch with quadratic
only, and mixed quadratic and linear incremental bidding functions are presented. Both algorithms will
have iteration complexity less than the order of the number of variables. Each iteration requires very
basic algebraic calculations. Hence the two algorithms are very effective and efficient. The numerical
examples demonstrate the efficiency and accuracy of the proposed approaches.
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