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Abstract – The procedure of sharing the Transmission Service Charge (TSC) among the Discos, the players in an 

electricity market, is modeled as a Socially Structured Transferable Utility (SSTU) game. Such an algorithm requires 

a hierarchical ordering of the Discos, in a given social structure and a method of ranking them in a permutation. 

These parameters have been designed to be endogenous in electricity markets, modeled in a Cooperative game 

theory (CGT) environment using multilateral trades. A suitably crafted TSC is used as the characteristic value of the 

game to identify trades with least loss on transmission lines. The development of a power vector indicating the 

strength of the players, ranking based on objective of the game and design of TSC are in tune with the requirements 

of an electricity market, the multilateral trade structure, a CGT environment and the socially stable core. The 

combinatorial game is applied to a five bus power system and results are analyzed. This work is important in the 

context of a still embryonic electricity market requiring a reliable, secure and harmonious transmission sector. 

  

Keywords – Cooperative game theory, core, electricity markets.  

 

 
1. INTRODUCTION 

Any joint venture, faces imminent failure if a constituent 

is dissatisfied, and wants to deviate. Economic or social 

discontent prompts the digression, whereas pay-off-

vector acceptable to all partners shelters a coalition. In 

electricity markets, real time deviations in power 

transaction are tantamount to network anarchy. These 

markets evolved due to a general failure of vertically 

integrated power systems and the desire for efficiency 

and accountability via competition [1]. Of the many 

trade structures used to carry out functions of the power 

business [2] multilateral format with idealized market 

concepts is used here [3]-[5] since reliable cost-benefit 

data of trades are not available. But distributed 

information and decision structures and consequent 

information asymmetry and market games that lead to 

abuse of transmission lines, is an eventuality not to be 

dismissed in such trades. 

          CG theory (CGT) environment is suggested as a 

solution to coordinate trades. In coalitional [6]-[8] 

games action sets are available to coalitions of players. 

The Nash program claims that all games can be reduced 

to non-cooperative formulation, but Aumann program 

[9] argues that two agents may have a common interest 

in ganging up on a third. While non-cooperative games 

claim that agents’ interests are opposed, CGT argues 

that with more than two players, their incentives are not 

wholly opposed to one another. In multilateral trades 

with several Discos and Gencos (load or generators 

agents), coalitions of at least two players at every stage 
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have common motivations. TSC is advocated as an 

instrument of coordination and its reduced allocation 

acts as an incentive. Generally, TSC is designed to 

recover operation and sunk costs of the grid [10]-[13]. 

The projected design is power flow based; assesses 

impacts on lines and penalizes exceeded limits [14]. 

TSC allocation is a conscious, coalitional choice, 

motivating traders to contract optimal trades. When 

agents coalesce, ensuing counter-flows reduce total 

TSC. Pay-off refers to a lesser share of TSC, and is 

made possible via co-operation of participants. The 

concept of power vectors [15]-[17] is adapted to identify 

partners capable of causing counter-flows in lines.  

In this paper electric power transaction is proposed 

as a CG coming under the class of SSTU game [18]-

[19]. The solution to this game is a mapping which 

assigns a set of pay-off distributions over the players, 

construed as TSC allocated to each agent. The game and 

its features are expressed, properties established and 

methods to derive a solution are shown after some 

preliminaries are given, both in electricity markets and 

in a SSTU game. 

2.  PRELIMINARIES 

In this work, two instruments that have been developed 

to coordinate multilateral trades in an electricity market 

are briefly explained first. 

2.1 Transmission Service Charge  

A line flow based differential price function is devised 

using current paradigms and market mechanisms. For a 

network with n nodes, L lines, flow through L lines z, 

and loss on L lines q, if weights for penalizing loss, sum 

of power flowing in all lines and flow in congested lines 

are a (Rs./MW
2
h), b and d (Rs./MWh) respectively, and 

embedded cost is c in (Rs./hr.), then the price function 

P(q) in  Rs./hr  

Socially Structured Transferable Utility Game Applied to 

Electricity Markets  

 

S. Balagopalan
*1

, S. Ashok
*
, and K.P. Mohandas

*
 

 

www.rericjournal.ait.ac.th



                                                 S. Balagopalan, S. Ashok and K.P. Mohandas / International Energy Journal 12 (2011) 179-190 

www.rericjournal.ait.ac.th 

180 

  + b  +c           (1) 

  

A quadratic equation ensures adequate penalization and 

minimization of loss. The weights must in general 

reflect local priorities. TSC must act as a fiscal 

instrument and deter bad impacts on grid. 

2.2  Power vector  

For a social structure in a subset of players, a dominance 

or hierarchical ordering exists. A power vector defines 

this structure for every coalition, and shows the 

strengths of all its members. Originally proposed to 

measure positional power for application in tournaments 

and games [18] it is developed here to identify partners 

for amassing trades along the least loss route. Directed 

graphs are used to represent transactions and vertices 

denote buses on which players of the game are stationed. 

Arcs with directions embody lines and power flow 

through them. The method used to measure power of 

nodes (players) consists of a node, deriving power, from 

both the number as also power of its successors as given 

below. Let  be the collection of ir-reflexive digraphs on 

the vertex set N={1,2,…,n} with  denoting 

the arc , (  (meaning node i dominates j). The 

positional power function is the function  

which maps each  to 

 
11 1

( ) ( )p A Af A I T s
n n

−
= −

         
                       (2)                                       

 Here T
A
 is the adjacency matrix of , with the  

entry =1 if  is an arc of   and 0 otherwise; is 

the score vector giving the number of successors of each 

node. In electricity markets nodes represent buses and 

Gencos or Discos located on them are players who can 

evaluate power vector based on system characteristics 

and directions of line flows. Players have maximum 

power if they can influence maximum outflows. 

2.3  SSTU Game Preliminaries [18], [19] 

A CG with TU describes a situation in which coalitions 

of players can obtain certain payoffs by cooperating. 

Some useful definitions and theorems are outlined to 

extend the concepts of SSTU Game to electricity market 

restructure.  

 2.3.1 Some Definitions of relevance  

 1. Structured Transferable Utility (STU) Game: A 

STU game is given by the triple Γ= ( , , ), with  

={1,2,…,n} finite set of players,  a 

characteristic function, assigning to any coalition  

of players a real number as its worth  ( ), and a social 

structure on every coalition represented by a power 

function . It assigns to each coalition S of its 

players the power vector ( ) within the underlying 

social structure of , where  {φ} is the 

collection of all non-empty subsets of N.  A power 

vector of coalition , is a non-negative vector in ,  i 

( ) =0 for any i not in  and  i ( ) >0 for at least one 

player i in . 

 2. Qualities of a TU game: A TU-game  is super-

additive (SA) for any pair of subsets  if    

 such that             (3)   

Convex    if 

   for all     (4) 

and permutationally convex if there exists a permutation 

π such that for all 1< j< k< n and defining rank number 

π(i) of any player ,  set of 

all players with rank number at most equal to rank of i 

including i himself it holds that Max 

 ]  for 

all                                                               (5) 

 3. Socially Stable (SS) Pay-off:  For a STU game, a 

payoff vector  is SS if Equation 6 has a non-

negative solution 

   ( ) =                                    (6) 

 If for some and coalition  it holds 

that ≤  then S is said to sustain  since S can 

obtain value ) without cooperating with players 

outside  If within S an individual at  sustained by S, has 

more power than others in S and  cannot be sustained 

by any other coalition, then he is able to increase his 

payoff at the expense of others and  is not SS. If 

nonnegative real numbers can be assigned to coalitions 

sustaining  such that weighted total strength of all 

agents is equal to 1, then  is SS. A POV  is feasible 

when total payoff is attained by cooperating as per some 

partition of grand coalition.  

 4. Economically Stable Payoff and Socially Stable 

Core: For a STU-game, a POV  is economically 

stable if =  and  for all (un-

dominated) i.e. a POV  is economically stable if and 

only if  is in the SA cover core of v. The SS core of the 

TU game is denoted SC( ) and consists of set of all 

economically and SS POV of Γ. If a POV  can be 

sustained only by the grand coalition { } and if 

, the collection { } is not stable and therefore 

 is not an element of SC (v, p).  A core element need 

not be Socially Stable. 

 5. Socially Stable Game: A STU game is SS if 

every SS POV of Γ is feasible. 

 6. Marginal Value Vector (MVV): For a 

permutation  on the player set  where П 

denotes set of all permutations, giving rank number 

 to any player , then MVV  

of game v and permutation π assigning to player i his 

marginal contribution to worth of coalition consisting of 

all his predecessors in π is  

   )                 (7)                 

 7. π-consistent power function: Power function 

 is π-consistent for a permutation π of , 

when for all coalitions S and for all players i and j in S it 

holds that  implies . 
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8. π-compatible power function: Power function  

 is π-compatible for a permutation π of N, 

when for all players  and for all coalitions S 

containing i such that  it holds that 

 

 2.3.2 Some Relevant Theorems 

 1. A SSTU game Γ= ( , , ) has a non-empty 

socially stable core if  Γ is SS.  

 2. If  is a convex game, then for every  the STU- 

game has a non-empty SS core.  

 3. For a STU game, for some permutation π of ,  

is permutationally convex and  is π-consistent, then SC 

( , ) of Γ contains marginal vector  as an 

element. 

 4. If a STU game  is convex and  is π-

compatible for some permutation π of  then SC ( , ) 

of  Γ contains the marginal vector  as its unique 

element. 

 Based on above assertions TSC sharing is modeled 

as a SS game with a stable set of coalitions. Then 

solution is a SS POV, realized by all elements of a stable 

group of coalitions. A unique solution resolves 

ambiguity. 

3. THE GAME IN ELECTRICITY MARKETS 

Concepts from CG with TU are extended to restructured 

electricity sector such that worth and social structure 

developed indigenously are valid to transmission sector. 

3.1  Participants in the Game 

In power transaction parlance Discos are considered to 

be the players of the game who form coalitions to reduce 

TSC. Scheduling of Gencos is based on trades 

contracted by Discos. So, onus of decision of choice of 

Gencos and trade volumes is on Discos. So coalition 

 has only Discos discussing power purchases for 

best values. 

3.2  Characteristic Value of the Game (v) 

Value of coalitions is a set of possible configuration 

conveying benefit of cooperating, especially since gain 

is not known when joining a coalition. A game is super-

additive, convex or permutationally convex based on . 

A solution assigns a set of POV to every TU game. A set 

valued solution is the core assigning to every game . 

    (8) 

  Functionalities like an efficient POV and an un-

dominated game are made the basis for choice of v. 

Negative TSC (Equation 1) is chosen as v. Thus 

coalition membership and values are linked with Discos 

only. Some factors that influenced these choices are 

discussed next. 

 1. Though Gencos pump energy into systems, 

Kirchhoff’s laws determine power flow directions. On 

demand power reach Discos from a mix of sources. So 

intent is that Discos guide course of events towards least 

loss, the ultimate aim, by demand manipulation or 

switching benefactors via coalitions.  

 2. An implicit reason for choosing Discos as 

players and TSC as coalitional value is to keep decision 

makers of energy charges, the Gencos, isolated and 

powerless to control design and division of TSC in any 

manner to avoid undue influences or market power. 

 3. Discos wrangle a power purchase deal from 

available options. Concurrently, they can ensure 

themselves least possible TSC share, through coalitional 

agreements, only if value of coalition indicates gains of 

cooperating. 

 4. It must be possible to assess convexity, 

superadditivity, and permutational convexity of v. TSC 

based on Equation 1 is considered an apt choice because 

it penalizes loss by squaring it and ascertains convexity. 

3.3  Power Function  

The choice of a power function is crucial to get a 

marginal vector and for it to be the unique element of 

the core. Two qualifications for power vectors - π 

consistency and π compatibility are imbibed and 

Equation 2 is used with some changes like excluding 

generator buses, reducing the order of the vector 

whenever membership is reduced etc. Thus Discos 

excluded from a coalition have zero strength. 

 The game and some concepts for extending to 

electricity markets have been presented. A few relevant 

features like solution space or core, ranking etc. are next 

explained. 

4. CORE OF THE GAME AND ITS 

 DERIVATION 

Assuming superadditivity and collective rationality, 

grand coalition will form at the end of the game. 

Solution to the game is the division of the joint payoff 

among the players.  

4.1  Imputation and Core 

The division of joint payoff  represented by POV 

 if it satisfies group (  ) 

and individual (  ) rationality is a logical 

candidate for solution and is called an imputation. These 

notions of rationality when includes coalitional 

rationality to a solution with all possible coalitions of 

players too, a new concept, the core is defined. A set of 

imputations fulfilling individual, coalitional and group 

rationality is a core. 

4.2  Derivation of the Core 

Considering a game of three players, the set of pareto-

optimum equations such that no member increase his 

share without reducing that of another member are given 

below which can be extended to any number of players. 

     

 

 (Efficient allocation)  (8)  

 

 Giving numerical values to these inequalities, the 

core restricted to a grand coalition of all 3 players, is a 
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triangle on a 3 dimensional space bounded by vertices in 

payoff space. This solution concept is simple, persuasive 

and consists of a set of imputations leaving no coalition 

in a position to improve the payoff to all its members. 

4.3  Socially Stable Core (SC(v,p))   

A socially stable core (SC( , )) is the outcome of a 

convex, super-additive and permutationally convex 

game. A POV lies in the SC( , ) if and only if  is 

economically feasible and un-dominated, fulfills 

individual, coalitional and group rationality and is 

sustained by a SS set of coalitions. The STU game has a 

non-empty SC( , ) if Γ is SS. But to establish 

feasibility for any SS POV, is a tough task. Social 

stability is sufficient but not a necessary condition for 

non-empty core.  If  is a convex game, then for every 

power function,  the STU game has a non-empty 

SC( ). But a game is convex if and only if core 

contains all the marginal vectors. Convexity implies 

super-additivity, so =  for any un-dominated 

POV. Then even if a POV can be found which is SS and 

sustained by a collection of stable coalitions, if POV is 

not feasible, then game Γ is not SS. Thus joint 

assumptions on power vector  and worth v, weaken 

assumptions made on v. Notion of π consistency is 

useful to tackle this problem. 

4.4  Notion of π Consistency  

When power function  is π consistent, rank of players 

assigned by π is consistent with the power of players in 

any coalition. MVV belongs to SC( , ) of Γ for a STU 

game, where for some π of N, v is permutationally 

convex and  is π-consistent. Then, core may contain 

multiple elements and the best solution is to be 

extracted. Clearly when  = e the power function is π 

consistent for any π and the core SC( , ) = . 

However when  is such that for any π a player i has 

little power in any coalition involving players   , 

SC( , ) can be shown to consist of a unique element, 

the MVV, which is precisely the π compatibility  

condition referred next. 

4.5  Notion of π compatibility  

When power function is π compatible, power of a player 

i in any coalition that involves another player who is 

ranked higher according to π, is less than the average 

power  Power function is π compatible 

implies that any player has so much power compared to 

his lower ranked players that he is able to extract all 

pay-offs from them up to a point when the lower ranked 

players could form a deviating coalition. However, 

neither π compatibility nor π-consistency implies the 

other. 

 At this stage players must be ranked to appraise the 

position of a player in any coalition. This rank is 

different from the strength of a player, as in a power 

vector. Some investigations made to assign a rank or 

hierarchical permutation is given, in the subsequent 

section. 

5. INDIGENOUS HIERARCHY OR RANKING 

By interpreting the definition of a permutationally 

convex game, it is inferred that a higher ranked agent 

brings more value to a coalition and so is much sought, 

though not uniformly by all parties. Thus in a 

cooperative game, based on the nature of the game being 

played, the route coalitions take, is generally dependant 

on ‘who needs whom’ more. Some of the facets 

considered in assessing hierarchy in this work are 

technical aspects, social features, and commercial 

considerations.  

5.1  Technical Aspects 

In the ‘TSC Distribution game’, main aim is to minimize 

impact on the grid. Thus prospects of reduction of loss, 

line loading, congestion etc. are taken as technical 

benefits that coalition members seek. Another decisive 

factor is position of an agent in the network 

configuration in which the game is played. In short, 

some alliances are ranked higher because they can be 

forged easily based on who the neighbors are and the 

impedance of line linking them. The reasons in such 

cases are both technical and social.  

5.2  Social Features  

Another aspect that affects rank of players is an 

evaluation of how weak an agent is. Reference is to the 

incapacity of an agent due to which threat looms of a 

coalition formation which excludes him. This is weighed 

against how powerful another agent is, whereby a 

promising coalition can be clinched, by wresting the 

chance from a contender. Here, social proximity of 

players and position in the network topology are 

important decisive factors. More than the electrical 

distance, network configuration or inter-Disco and 

Genco-Disco proximity influences coalition decisions 

here. The compensation package at an agent’s disposal, 

which he can offer to lure partners are commercial 

aspects that are used to rank players. 

5.3  Commercial Considerations  

A major indicator used to rank players is minimum TSC 

per unit of energy the player has to pay for his 

transaction from his vantage point. Such commercial 

aspects are going to be crucial issues that decide the 

hierarchy. 

 A game with nonempty core is sociologically 

neutral since every cooperative demand by any coalition 

can be granted and there is no need to resolve conflicts. 

But in a coreless game, coalitions are too strong for any 

mechanism to satisfy every coalition demand. 

Simultaneously, too many elements in the core, makes it 

difficult to arrive at a solution, because of little 

predictive power for the core. 

6. SOLUTION TECHNIQUES  

The stable set is said to have a more general solution 

concept and is based on dominance. If every player in 

the subset S prefers payoff offered by say y and if 
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members of subset S have the power to form a coalition 

and position to enforce their preferences then solution 

has both internal and external stability. The bargaining 

set is another technique based upon objections and 

counter-objections of players through imputations. 

Solution based on excess theory has the Kernel as a 

solution concept and is based on a pair-wise comparison 

of all players in a game in terms of excess payoff that 

one of the players could have by forming a coalition that 

excludes the other. 

6.1  The Nucleolus 

One advantage of nucleolus is that every game has one 

and only one nucleolus, and is in the non-empty core. It 

combines ideas of excess, stability of core and equity of 

value. It is an imputation with maximal excess 

minimized i.e. max emin (emin = min {Σxi - v(S)}), over 

all coalitions S. The basic idea is to find an imputation 

which makes the unhappy member of a potential 

coalition happier than under any other imputation. 

6.2  The Shapley Value (SV) 

A CGT solution concept of a fair division of a common 

utility among n coalition members and is the weighted 

average of marginal contributions of a member to all 

possible coalitions in which it may participate. The 

game is super-additive and assigns a-priori worth to 

each player of any coalition structure S. Shapley proved 

that a unique solution results and the POV or reward is 

given by  

. 

 It means that player i’s reward is the expected 

amount he adds to the coalitions of players who are 

present when he arrives. Two inclusions are probability 

that players in S are already present when i arrives, and 

combinatorial nature of playing. One player starts the 

game and each player is added one at a time till a grand 

coalition is formed. Order of arrival is a pure chance 

mechanism and all permutations equi-probable. A 

striking feature of SV solution is that it is unique for 

every game. A defect is that the strength of players is 

not reflected as in a core and so is not suitable for 

decentralized games. 

6.3  Bilateral Shapley Value (BSV) 

To avoid the exponential complexity of Shapley Value 

calculation in a multi agent system, with probabilities 

for any kind of coalition formation, the Bilateral Shapley 

Value for some coalition Si in a bilateral coalition S is 

bsv Si,Sj (Si)= 0.5  (Si) + 0.5 [  (S) -  (Sj)].  

 It is inferred that a synchronized algorithm is 

needed to adopt the Shapley value solution. The 

nucleolus may be used wherever minimization of 

excesses is possible. If equilibrium can be established 

kernel is a good solution concept. The bargaining set 

depends a lot on persuasive powers of players and there 

is no end to such a process. For applying BSV, coalition 

formation is considered. If game is super-additive a 

grand coalition forms and a backward process for 

redistribution of worth only is done. 

6.4  Marginal Contribution Vector 

The Marginal Value Vector of game v and permutation π 

is   ). The SV is the 

average of MVV over all permutations and is an element 

of the non-empty Weber set. The core and Weber 

coincide if and only if and when the game is convex.  

7.   APPLICATION TO ELECTRICITY 

 MARKETS 

In multilateral format, trades are contracted by local 

agents in electricity markets. In the first phase, Discos 

derive local information like power vector and possible 

TSC levied for different trades in order to compare with 

energy charges. Transmission Providers (TP) determine 

TSC using load flow analysis, conduct least loss 

iteration and broadcast corresponding TSC and power 

vectors in central computation phase. In common 

information derivation and negotiation phase Discos 

negotiate and merge based on TSC reduction as 

influenced by cooperation. Socially stable coalitions 

result if TSC distribution game is played effectively. 

Procedure and illustration are as follows.  

7.1  Application Procedure (Figure 1) 

The following steps are used to illustrate the route. 

 1. The game Γ= ( , , ),  players, coalitional 

values and power vectors are identified  

 2. Convexity and super-additivity are checked and 

if positive, permutational convexity is verified after 

ranking the players, judiciously in a permutation.  

 3. Based on the rank of the players π consistency 

and π compatibility are examined.  

 4. Core is obtained and if possible marginal vector 

is derived. Else POV is obtained and social stability 

checked  

7.2  Application to a 5-bus System 

The objectives are cited before expressing an SSTU 

game. A 5-bus power system [20] is taken for 

illustration (Figure 2). Pay-off solutions are obtained 

and compared with other methods. At first, initial trades 

are derived in local information phase (Table1). Central 

computation phase as conducted by the TP is also given. 

Here, the outcome of initial trades contracted by Discos 

for a total transaction of 165 MW is a loss of 4.74 MW 

whereas optimal trades incur 1.6 MW. It provides 
guidelines for targeting optimal trades using power 
vectors. The lowest TSC to be shared (26.6 % of initial 

trades) as the SSTU game is also shown. 

 

 



                                                 S. Balagopalan, S. Ashok and K.P. Mohandas / International Energy Journal 12 (2011) 179-190 

www.rericjournal.ait.ac.th 

184 

 

 
 

Fig. 1.  Algorithm of application of SSTU game to electricity markets. 

 

 

Fig. 2.  Five bus power system with original and desired trade configurations. 
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 Next the game is expressed and qualities of the 

game are checked for searching out a solution.  

 Players in the Game:  

The players are Discos on buses 2, 3 and 5. They form 

,[(2),(3),(5),{2,3}, {2,5}, {3,5},{2,3,5}] 

coalitions trading in several ways with the two optional 

Gencos. (6 solo, 4 duos and a grand coalition of Discos 

with optimal trades shown in Tables 1 and 2). 

 

 

Table 1.  TSC and trade data for original problem and optimal trades for the 5 bus problem. 

 Original Problem Optimal Trades 

Disco on buses 

No: (Demand) 

Genco bus 1 

Load in MW 

Genco bus 2 

Load in MW 

Genco bus 1 

Load in MW 

Genco bus 4 

Load in MW 

2      (20MW) 13.623 6.376 13.846 6.154 

3      (45MW) 39.544 5.456 5.002 39.996 

4      (40MW) 30.463 9.536 0 40 

5      (60MW) 41.374 18.628 23.654 36.546 

Total loading  129.74 40 44.102 122.696 

Line loss 4.77MW 1.6 MW 

Sum of power flow in all lines 262.6 MW 163.7 MW 

TSC in Rs /hr. 3,11,400 82,515 

 

 

Table 2.  Trade details locally derived and commonly derived after negotiation. 

Local computation 

Phase (Trade in MW) 

Loss 

(MW) 

TSC 

(Rs./hr) 

Ave. 

Rs./ kWhr 

Common Information  Derivation of 

coalitions (2,3), (2,5) and (3,5) 
TSC Rs./hr. 

( MW loss) 

Ave.   

Rs/kWh 

Disco Genco    Members Gen 1 Gen 4   

Bus 2 1 
(20) 

0.0674 8260 0.413 
(2,3) 

2 13.32 6.68 21400 .329 or 

.204 Bus 2 4 0.0869 12650 0.632 3 5.89 39.11 (.2312) 

Bus 3 1 
(45) 

0.6017 38015 0.845 
(2,5) 

2 12.73 7.27 62915 .786 or 

.524 Bus 3 4 0.1794 15595 0.346 5 21.91 38.09 (1.3622) 

Bus 5 1 
(60) 

1.571 75140 1.252 
(3,5) 

3 4.995 40 68305 .650 or 

.471 Bus 5 4 1.307 63610 1.06 5 25.76 34.24 (1.3512) 

 

 

Table 3.  Preliminary allocation of TSC. 

merger 
Sum self 

values 
v(S) TSC 

profit 

vide (1) 

profit 

vide (2) 

POV of 

2 
POV of 3 

POV of 

5 

(2,3) 
8260+15,595 

=23,855 

9726+18,530 

= 28,256 
21,400 2455 6856 

7032 14368 (1) 

6298 15102 (2) 

(2,5) 
8260+63610 

= 71,870 

9856+67,820 

= 77,676 
62,915 8955 14,761 

3783 �(1)� 59132 

2475 � (2)� 60440 

(3,5) 
15,595+63,610 

= 79,205 

18,082+68,560 

= 86,642 
68,305 10,900 18,337 

(1)� 10145 58160 

(2)� 8914 59391 

(2,3,5) 87,465 
9610+18,085+ 

68,120=95,815 
82,515 4950 13,300 

6610 13945 61960 

5177 13652 63687 

 

 

Table 4.  Power vector for the 7 coalitions considered in the 5 bus problem. 

Coalition� (2) (3) (5) (2,3) (2,5) (3,5) (2,3,5) 

Disco 2 0.2067 0 0 0.4620 0.4619 0 0.4565 

Disco 3 0 0.2123 0 0.2532 0 0.4541 0.4911 

Disco 5 0 0 0.2122 0 0.2531 0.2527 0.2484 
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Characteristic Value: 

TSC allocated is to be minimized and is taken as the 

objective function (negative). Central Electricity 

Regulatory Commission (CERC) guidelines were used 

to choose the weights (a = Rs.500/MW
2
h, b = 

Rs.250/MWh and d = Rs.10,000/MWh)TSC computed 

for each coalition is given in Table 2. Tentative 

allocation in Table 3 uses a simple sharing of coalitional 

benefits from trades causing least impacts and their 

actual allocation. 

Power Vectors: 

Power vectors are given in Table 4 for trades linked to 

least TSC of seven relevant coalitions. 

Convexity and Superadditivity of the Game: 

To study the game from perspectives of TP and Disco 

interactions (Phase 1) and intra-Disco dialogues (Phase 

2), two modes are examined for above coalitions and 

given in Table 5. The actual minimum TSC for 

transactions is used in Phase 1 (for e.g. bus 2 incurs least 

TSC if buying from bus 1) to check convexity and 

superadditivity. Actual lower TSC are compared to sum 

of locally computed TSC of Discos. In Phase 2 sum of 

individual benefits are compared with divulged coalition 

information for a verdict.  

Checking Permutationally Convexity of the  Game: 

To assess this property which guarantees a workable 

solution for a game, a permutation is to be identified 

such that all n players can be arrayed as . 

Because only limited number of Discos (on bus 2, 3 and 

5) play the TSC sharing game in this example, hierarchy 

structure is short. Scope for choosing various 

permutations and subsequent mapping of convexity is 

also limited. So, all possible permutations are attempted 

here. Also, if the information of least TSC of sub-

coalitions is released in advance, collusion hinders 

further coalition formation and hence least loss 

formulation. Hence only common information values of 

coalitions are used in Table 6. Lowest TSC of each 

Disco is used in column (1) and sum of minimum TSC 

of both agents in column (2) (i.e. Disco i weighs his 

benefit in the coalition with Disco j). Column (3) picks 

the more beneficial value. But at the final stage the 

sentiment of TP is echoed, who releases overall 

minimum TSC the grand coalition pays (column (4)) 

and this agent thus loops in more people into the 

coalition. Hence, this game has permutational convexity. 

So, grand coalition alone is given the full benefit of 

coalitional value. The core is non empty because 

condition for permutational convexity is satisfied for all 

permutations.  

 Next ranking issue is investigated. 

Ranking the Players:  

 a. Technical considerations: For working out a 

ranking scheme, benefits of coalition are divided in the 

ratio of power demands of Discos who are in contention. 

For e.g. when Discos at bus 2 and 3 combine their 

transactions, loss is only 0.2312 MW due to counter-

flows, in the least loss formulation.  Similarly bus 2, 

buying from bus 1 incurs least loss of 0.0674 MW. For 

bus 3 when contracting with bus 4, loss is 0.1794 MW, 

totaling to 0.2468 MW. This means a lessening of losses 

by 0.0156 MW which when shared in the 20:45 MW 

demand ratio amounts to a share of 4.8 kW and 10.8 kW 

for bus 2 and 3 respectively. A similar computation of 

lower loss in kW for all coalitions is given in Table 7. 

The same situation is seen when roles of Discos in 

reduction of total power shuttling over lines and 

congestion of vulnerable lines are examined. Disco at 

bus 3 has top rank, then 2 and at the bottom rung is 

Disco on bus 5. This survey is extended to other 

considerations.

Table 5.  Checking convexity and superadditivity of coalitions in the 5 bus game. 

S T v(S)-(Ph.2) v(T) (Ph.2) 
v(S) + v(T) 

v(SUT*)(Ph.2) 

v(SUT) 

Ph. 1 

v(S ∩ T) 

(Ph.2) 

Phase 1 

and 2 

2 3 
-8260                 

(-9726) 
-15,595 (-18530) -23,855 (-28256) -21,400 0 

Convex,S

A 

2 5 
-8260                  

(-9856) 
-63,610 (-67820) -71,870 (-77676) -62,915 0 ,,    ,, 

3 5 
-15,595                  

(-18082) 
-63,610 (-68560) -79,205 (-86642) -68,305 0 ,,    ,, 

(2,3) 5 
- 23,855                   

(-28256) 
-63,610 (-63610) -87,465 (-91866) -82,515 0 ,,    ,, 

(2,5) 3 
-71,870                    

(-77676) 
-15,595(,,) -87,465 (-93271) -82,515 0 ,,    ,, 

(3,5) 2 
-79,205         

(-86642) 
-8260 (,,) -87,465 (-94902) -82,515 0 ,,    ,, 

(2,3) (2,5) 
- 23,855                   

(-28256) 
-71,870 (-77676) -95,725(-105932) -82,515 

-8260            

(-9610) 
,,    ,, 

(2,3) (3,5) 
- 23,855                      

(-28256) 
-79,205 (-86642) -103,060(-114898) -82,515 

-15,595      

(-18085) 
,,    ,, 

(2,5) (3,5) 
-71,870                     

(-77676) 
-79,205 (-86642) -151,025(-164318) -82,515 

-63,610   

(-68120) 
,,    ,, 
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Table 6. Checking permutational convexity for all permutations in the 5 bus problem. 

v(5)  (1)  (2)  (3) (4) Is (4)> (3) 

-63610 -(79,205-18,082)                    

= -61,123 
-61,123 -(82,515-23,855) = -58,660 Yes PC 

v(5)  }  
Yes  PC -63610 -(71,870-9,856)                     

= -62014 
-62,014 -(82,515-23,855) = -58,660 

v(2)  }  
Yes  PC -8260 -(23,855-18,530)                    

= -5,325 
-5,325 -(82,515-79,205) = -3,310 

v(2)  }  
Yes  PC -8260 -(71,870-67,820)                      

= -4,050 
-4,050 -(82,515-79,205) =-3,310 

v(3)  } 
 

Yes PC -15595 -(23,855-9,726)                      

= -14,129 
-14,129 -(82,515-71,870) =-10,645 

v(3)  } 
 

Equal PC -15595 -(79,205-68,560)                   

= -10,645 
-10,645 -(82515-71,870) =  -10,645 

 

 

Table 7.  Ranking players based on line loss reduction. 

Agent 

at bus 

Benefit in 

reducing 

Coalition 

(2,3) 

Coalition 

(2,5) 

Coalitio

n (3,5) 

Coalitio

n (2,3,5) 

Rank 

order 
Reasoning 

2 Loss 4.8 3.05 - 8 5 3 is sought by both 2 and 5 due 

to more reduction of loss; 5 

needs the coalition most 

3 Loss 10.8 - 57.9 18.1 2 

5 Loss - 9.15 77.3 24.1 3 

 

 

 b. Social considerations: The network has a line of 

lowest impedance between generator bus 4 and Disco 3. 

Hence its demands are largely met by bus 4 whatever be 

its contracts because other paths offer higher 

impedances. Hence in the grid, bus 3 has a significantly 

superior position. Next lowest impedance line is 

between bus 2 and bus 1 and so bus 1 is the main 

supplier to power needs of bus 2. So it is ranked 

between bus 3 and 5. Bus 5 is situated strategically in a 

vulnerable position, almost equidistant electrically from 

both generators. Thus socially too, ranking echoes what 

was assigned based on impact of trades. Disco at bus 5 

is last, 2 in the middle and 3 tops with rank numbers 1, 

2, and 3, respectively.  

 c. Commercial considerations: Average TSC per 

unit of energy drawn is a good figure of merit to 

compare who needs coalitions most and the order of 

preference. Bus 3 transacts at a minimum TSC of Rs. 

0.346/kWh. Next lowest TSC is achieved by bus 2 (Rs. 

0.413/kWh.) The worst figures are for bus 5 which can, 

at best, aspire only to Rs. 1.06/ kWh. Definitely ranking 

will reflect this capability by according top rank to bus 

3, next to bus 2 and the last to bus 5. It can be seen from 

Tables 3 that all preliminary POV allocation schemes 

associate a TSC of more than Rs. 60,000/- to bus 5, 

which is 7 to 8 times of allocation to bus 2 but demand 

is only three times that of bus 2. Whereas load ratio of 

bus 3 and 5 is 3:4, TSC payable or pay-off vector ratio is 

about 1:4. This implies a low stature for bus 5 

commercially and a low rank too. Bus 3 is again 

superior to bus 2 on account of its pay-off data too. It 

transacts a load of 2.25 times that on bus 2 but is allotted 

only double the TSC apportioned to bus 2. 

 In this very short hierarchy structure, ranking is 

done as follows. Disco on bus 3 gets a rank number 3 as 

the ‘top man’ and joins the set having utmost rank equal 

to 3. Next ranked player is bus 2 accorded a rank 

number 2, with only two players- bus 2 and bus 5- in the 

set having utmost rank equal to 2. And at the bottom we 

have bus 5 as a sole member in this set. With the ranking 

published, the job of checking permutational consistency 

of power vectors of the game is taken up. 

Permutationally Consistent Power Vector:  

Power vectors given in Table 4 are used to check 

permutational consistency and detailed in Table 8 for all 

coalitions. The permutation being examined has a 

ranking order of bus 3 > bus 2 > bus 5 in each of the 

coalitions. Coalition (2,3) alone is not permutationally 

consistent because bus 2 has many more successors than 

bus 3 in the power system configuration investigated. 

This shows the difference between a power vector and 

ranking. 

Permutationally Compatible Power Vector:  

The property is studied via Table 9 given below. The 

lower ranked players are bus 5 and bus 2 when both play 

with bus 3 and bus 5 alone when playing with either bus 
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2 or bus 3. 

 Neither π-consistency nor π compatibility could be 

fully established for p. However, though marginal vector 

is not the unique solution, existence of other solutions 

are explored to generalize the solution technique.  

Deriving the Core for the 5 Bus Power System: 

Using Equation 8, solution is confined to a triangle as 

per the nucleolus concept and given in Figure 3. 

Separate values, available at two information phases are 

used to compare the nucleolus. Discos on bus 2, 3 and 5 

are designated players 1, 2 and 3, respectively while 

considering TSC allocation in the local information 

phase. The same players are denoted as A, B and C 

respectively while TSC allocation, based on common 

information derived as a part of negotiation, is 

considered. The existence of a solution space admits 

experimentation with pay-off vectors derived using 

other methods to extract socially stable solutions. 

 

 

 

Table 9.  Checking permutational compatibility of the power vectors. 

Coalition (2) (3) (5) (2,3) (2,5) (3,5) (2,3,5) 

Power of 2 0.2067 0 0 0.4620 0.4619 0 0.4565 

Power of 3 0 0.2123 0 0.2532 0 0.4541 0.4911 

Power of 5 0 0 0.2122 0 0.2531 0.2527 0.2484 

p(5) : N \ (2,3) Check if p(5) <  NA 
.2531<.357

5 

.2527<.353

2 

.2484<.398

7 

p(5, 2 )
T
 : N \ (3) 

Check if p(5) and p(2) <    
 

5 not in S 

p(2)> ave. 
NA 

p(5) <ave. 

2 not in S 

  ,, 

p(2) > ave. 

π compatibility NA NA NA No Yes Yes No 
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Fig. 3.  Solution space for the 5 bus example using allocated values of TSC in local and common information phase. 

 

 

 

 
 

Table 8.  Checking permutational consistency of the power vectors. 

Coalition (2) (3) (5) (2,3) (2,5) (3,5) (2,3,5) 

Power of 2 0.2067 0 0 0.4620 0.4619 0 0.4565 

Power of 3 0 0.2123 0 0.2532 0 0.4541 0.4911 

Power of 5 0 0 0.2122 0 0.2531 0.2527 0.2484 

Comparison 

of PV 

p(2)>p(3) 

and p(5) 

p(3)>p(2) 

and p(5) 

p(5)>p(2) 

and p(3) 

p(2)>p(3) 

>p(5) 

p(2)>p(5) 

>p(3) 

p(3)>p(5) 

>p(2) 

p(3)>p(2)   

>p(5) 

π 

consistency 
NA NA NA No Yes Yes Yes 
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Solution as Applicable to 5 Bus System:  

 1. The nucleolus is computed for coalitional values 

in Phase 1:  x (2,3,5) =  [- 10075,  -15460, -56980 ]
T
 Rs/ 

hr. Phase 2: x (2,3,5) = [- 6610, -13,945, -61,960]
T
 Rs/ 

hr. A problem with this solution is that emin is not less 

than or even equal to any individual payoff and must be 

resolved for a generalized and hence accepted as a 

unique solution. 

 2. The Shapley values computed show that both the 

payoff vectors sum to a non-feasible total coalitional 

value. Thus the remainder is to be shared via a suitable 

procedure. A more acceptable solution with more 

relevance to the core i.e. the bilateral Shapley value is 

examined next. 

 3. In the bilateral Shapely value derivation, a 

reallocation is made of the total coalition worth of -

82,515, assuming that based on power vector 

information, agents at bus 2 and bus 3 form the first 

meta-agent. In Phase 1 

 [x(2)  x(3)  x(5) ] 
T
 = [-6908, -20,152, -62,363] 

T
 

 At the final stage, founder member of the coalition 

gets a better worth. But till then recursive calculation is 

used. Similarly payoff vector for Phase 2 coalitional 

values are [x(2)  x(3)  x(5) ] 
T
 = [ -7022  -14,358, -

61,135] 
T
 

 4. Marginal contribution is also assessed before the 

social stable core is derived to identify the payoff vector 

if a unique solution is likely. This is so if a 

permutationally convex game is permutationally 

consistent and compatible too. Here marginal vector is 

shown to fail, as expected. It is based on bus 5 starting 

the coalition and bus 3 with the top rank being the last 

entrant and is as follows. In Phase 1: MC(3) = - 19600, 

MC (2) fails and MC (5) = - 63610.  

 With Phase 2 coalitional values, MVV(2,3,5)= [- 

8260, - 10645, - 63610] Rs./hr. The payoff vector must 

be designed to be at most equal to these values. 

Socially Stable Core:  

A core or solution space is derived for both phases with 

vertices as illustrated in Figure 3. Next a socially stable 

core is examined using feasible payoff vectors so far 

derived and shown in Table 10. This exercise aims to 

identify coalitions that can sustain the corresponding 

payoff vector. So far every feasible POV derived is 

socially stable. The only problem is that the core does 

not contain a unique solution.   

 The results are still interesting and significant since 

the solution space offers scope for further negotiation 

and bargaining power, based on players’ persuasive 

skills. 

8.  CONCLUSION 

A method for TSC allocation is introduced, intuitionally 

more applicable to electricity markets than conventional 

methods because the procedural components take 

advantage of many traits of market agents. One of them 

is the inherent choice factor and its capacity to promote 

competition among both Discos and Gencos. 

Simultaneously, the sense of responsibility that comes 

with conscious choices reduces incidences of real time 

retraction, especially since the spirit is of TSC sharing 

and not of allocation. Moreover, scope for negotiation 

and extraction of coalitional information in this method, 

resolves the uncertainty factor in an information 

asymmetric market. The biggest engineering advantage 

is that security of the grid becomes a common agenda 

and a unifying force in a profit motivated milieu where 

commercial considerations overrule engineering 

requirements. There are inbuilt mechanisms for 

checking efficiency of the pay of vector. Another 

attractive feature is the social stability associated with it 

and consequently the method, which is crucial in real 

time operation of an electricity market.  

 A unique solution could not be obtained in the 

example considered because Disco at bus 2 has more 

influence on power flowing in the network but a lower 

rank as per the hierarchy considerations used here. The 

indigenously constructed power vector, ranking and 

TSC need to be investigated further for obtaining unique 

payoff vector as the solution. The choice of weights in 

TSC evaluation also needs a rethink or expert 

procedures.  

 

Table 10.  Checking for social stability for all feasible payoff vectors for the 5 bus game. 

Method Payoff vector Coalitions    ( ) Is [  ]
T  

+ve SSC 

nucleolus -[6610,13945,61960] 
(2,5)and (3,5)and 

(2,3,5) 
Λ1p(2,5)+Λ2p(3,5)+Λ3p(2,3,5) 

[1.79, 

.79,.38]Y 
Yes 

demand  -[7468,13813,61234] 
(2,5) and (3,5) and 

(2,3,5) 

Λ1 p(2,5) + Λ2 p(3,5)+ Λ3 

p(2,3,5) 

[1.79, .79, 

.38]Y 
Yes 

 ,,  -[5177,13652,63687] 
(3)(2,5) and (3,5) and 

(2,3,5) 

Λ1p(2,5)+Λ2p(3,5)+Λ3p(2,3,5)

+Λ4p(3) 

[1.8,.79,.38,

0]Y 
Yes 

loss  -[7485,13300,61740] 
 (2,5) and (3,5) and 

(2,3,5) 

Λ1 p(2,5)+Λ2 p(3,5)+ Λ3 

p(2,3,5) 

[1.79, 

.79,.38]Y 
Yes 

BSV -[6908,13244,62363] 
 (2,5) and (3,5) and 

(2,3,5) 

Λ1 p(2,5) + Λ2 p(3,5)+ Λ3 

p(2,3,5) 

[1.79,.79,.3

8]Y 
Yes 

BSV(2) -[7022,14358,61135] 
 (2,5) and (3,5)and 

(2,3,5) 

Λ1 p(2,5) + Λ2 p(3,5)+ Λ3 

p(2,3,5) 

[1.79,.79,.3

8]Y 
Yes 
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