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Abstract – This paper proposes a method to allocate transmission usage for simultaneous bilateral transactions 
using artificial neural network (ANN). The basic idea is to use supervised learning paradigm to train the ANN, 
utilising a conventional circuit theory method as a teacher. Based on solved load flow and followed by a procedure to 
decouple the line usage on the basis of transaction pairs, the description of inputs and outputs of the training data for 
the ANN is obtained. The structure of artificial neural network is designed to assess the extent of line usage by each 
generator while supplying to their respective customer. Most commonly used feedforward architecture has been 
chosen for the proposed ANN based transmission usage allocation technique. Almost all the system variables 
obtained from load flow solutions are utilized as an input to the neural network. Moreover, tan-sigmoid activation 
functions are incorporated in the hidden layer to realize the non linear nature of the transmission usage allocation. 
The proposed ANN provides promising results in terms of accuracy and computation time. A 6-bus and also the 
modified IEEE 14-bus network is utilized as test systems to illustrate the effectiveness of the ANN output compared to 
that of conventional methods. 
  
Keywords – Artificial Neural Network (ANN), bilateral transactions, circuit theory, transmission usage allocation. 
 
 1. INTRODUCTION 

The restructuring in the bulk power consumer have been 
towards into bilateral transactions service with electric 
power utilities to avoid price fluctuations of energy 
market in a deregulated environment. Electric power 
utilities need to know the actual cost of providing 
unbundled services in order to make correct economic 
decisions that they should promote or curtail while 
considering their service obligations. As part of these 
trends, the emphasis on the knowledge of providing 
unbundled transmission service has been important and 
increasing steadily. The concept of bilateral transactions 
allows the consumers and utilities to work according to 
their policy and does not make them dependent on 
everyday bid like in a pool model. Bilateral transactions 
enable consumers to make their best price deals for 
generation supply with whoever in the competitive 
market is most effective to meet their load demand. 
Allowing supplier to transact directly with consumers 
creates competition in terms of pricing, contract 
duration, payment terms, type of generation and type of 
electric service on both sides of the transaction. 
Generators compete among themselves to supply this 
demand. This gives consumers a full range of choice 
among generators. Thus, bilateral transactions will 
provide a wide range of choice to meet various customer 
needs. Typically, the transactions are executed through 
independent market operators or independent system 
operators. Therefore, each supplier has to produce 
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enough power to meets its transacted powers with 
individual customers and system losses. One of the most 
crucial ‘technical’ data needed about a transaction is the 
actual usage and path of the power follow from each 
generator or load across the interconnected system. For 
that reason, it is vital to determine the impact and flow 
path of the simultaneous transaction taking place in the 
system accurately and efficiently [1]. 

This knowledge of the transmission usage is also 
essentially important in the implementation of usage-
based cost allocation methods. Due to non-linear nature 
of power flow, it is difficult to decouple the actual line 
flows into components associated with individual 
transaction pairs accurately. Therefore, it is required to 
use various techniques such as approximate models, 
tracing algorithms or sensitivity indices to estimate the 
contribution to actual line flows from individual 
customers. The tracing methods [2]-[5] based on the 
actual power flows in the network and the proportional 
sharing principles are effectively used in transmission 
usage allocation, but it is only suitable for pool based 
market model. Reference [6] proposed a modification of 
tracing method which was presented in reference [2]. 
The method, based on proportionality concepts, traces 
the decomposition of flows from generators and loads 
simultaneously by using Markov chains. However, the 
matrix calculation is more complex and the speed is a 
problem for a big network. In reference [7], line power 
flows are first unbundled into a sum of components, 
each corresponding to a bilateral transaction. The 
scheme then proposes ways in which the coupling terms 
among the components appearing in the line losses can 
be allocated to individual bilateral transactions. In 
reference [8] a process is used whereby individual 
bilateral transactions are gradually incremented along a 
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given path of variation. Once the path of variation and 
the loss suppliers are specified, the incremental contract 
loss allocations and their sums are uniquely determined. 
Reference [9] proposed a distributed slack bus scheme 
for transmission and ancillary services pricing 
associated to bilateral transaction market. A circuit 
approach to allocate transmission losses for 
simultaneous bilateral transaction is proposed in 
reference [10]. Reference [11] introduced current 
adjustment factor to allocate real and reactive power 
losses in bilateral market. In addition, a new voltage 
participation index is proposed to measure reactive 
power supports participation. 

Reference [12] proposed a systematic method 
based on the basic circuit theories, equivalent current 
injection and equivalent impedance to allocate the power 
flow and loss for deregulated transmission system. 
However, arranging payments with counter flows is a 
difficult process. The method to allocate the power flow 
and losses based on the electric circuit theories is 
proposed in reference [13]. This method assumed that 
the current at each network injection point may flow 
through all lines and reach all loads, which may not be 
true for all system. Reference [14] introduced the 
transaction pairs based on circuit concept to calculate 
associated losses for bilateral transactions in an 
interconnected system. However, this method does not 
demonstrate the application of line usage allocation. 

Counter flow is the component contributed by a 
particular transaction that goes in the opposite direction 
of the net flow [1]. In the novel MW-mile formulation as 
well as some usage-based allocation-pricing rules, 
impact of each transaction on the flows is measured by 
the magnitude so that all transmission users are required 
to pay for the use of path-provision service, irrespective 
of the flow directions. However, in view of the 
contributions of counter flows in relieving the congested 
transmission lines, any usage-based tariff that charges 
for counter flows need to be carefully reviewed [15]. In 
this regard, the zero counter flow pricing methods 
suggests that only the transactions that use transmission 
facility in the same direction of the net flow should be 
charged in proportion to their contributions to the total 
positive flow. 

In [16], sensitivity factors are proposed for pricing 
transmission costs which depend on a base load flow 
case. However, it can be inaccurate for a large 
transaction, thus additional corrective scheme need be 
considered. Reference [17] proposed the actual use of 
transmission facilities, by a product of power due to a 
particular transaction times the distance travels in the 
network. In a related work based on artificial intelligent 
techniques, [18] proposed a transmission loss allocation 
method using ANN. The ANN allocates losses with 
good accuracy and in a quick manner. 

From the extensive literature review it can be seen 
that the proposed methodology is still unique and not 
being applied directly to the determination of the line 
usage allocation. The goal of this paper is to incorporate 
the ANN to calculate line usage associated to bilateral 
transactions between purchasing and selling entities. 

Method based on Circuit theory [14] has been chosen as 
a teacher to train the neural network. This method is 
very suitable for line usage allocation under bilateral 
contracts based model. This algorithm is self balancing 
and dependent only on defined transaction pairs 
regardless of slack bus assignment. Moreover, real and 
reactive transactions losses are taken into account in the 
calculation of power flow solution. Artificial 
Intelligence has been proven to be able to solve complex 
processes in deregulated system such as loss allocation. 
So, it can be expected that the developed methodology 
will contribute significantly in knowing transmission 
usage allocation for deregulated system in a faster and 
accurate manner. A short description of the Circuit 
method [14] is described next as it has been used as a 
teacher of developed ANN methodology. 

2. CIRCUIT METHOD FOR UNBUNDLING 
LINE USAGE 

Transaction pair encompasses of a sending bus and 
associated receiving bus. Each transaction pair 
corresponds to a bilateral energy transaction. An ideal 
transaction pair is self-balancing, i.e., its net real 
generation should equal to the sum of its active demand 
and associated transmission loss. The method assumes 
that each sending bus, is only associated with a single or 
multiple transactions. The following notations are used 
in this paper. The derivation, to decompose the load real 
powers into components contributed by specific 
generators starts with basic equations of load flow. 

 
ns : Set of sending buses in the system; 
nb : Set of sinking buses in the system; 
nl : Set of all branches in the system; 
nt : Set of bilateral transactions in the system; 
Tk : kth bilateral transaction (transaction pairs); 

Vi: Complex voltage value at bus i ,  ijθ
ii eVV =

Ii , Ibranch(ij) : Complex injected current value and 
branch current value of bus i and branch (ij). 
Si = Pi + jQi  : Net complex power in term of bus i  
yij = gij – jbij : The admittance of the branch (ij); 

Problem Formulation 

Based on net real power generation, it should be equal to 
the sum of its active demand and associated 
transmission loss to form  a transaction balance 
equations as in Equation 1 [14].  
For each ntTk ∈ ; 
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All power injections are translated into complex 
injected currents to bypass non-linear coupling between 
real and reactive power flow as shown in Equation 2: 
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Complex branch current components imposed by 
individual transaction can be calculated using the 
Equation 3. For each kkk Tnbm,Tnsk and nt,T ∩∈∩∈∈  
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where yij – the admittance of the branch (ij); Zik, et al. – 
means ikth entries of the nodal impedance matrix 

Notice that the decoupled branch current vectors 
are exact solutions from Kirchoff Laws. Accordingly, 
both real and reactive losses  and incurred 
by Tk can be calculated using the Equation 4, 
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Substituting  from Equation 4 into Equation 

1, it is possible to get expanded power flow equation 
which can be solved using Newton-Raphson method 
until transaction balance is reached. Once the transaction 
balance is obtained, real power flow components 
(denoted by ) in branch (ij) contributed by a 

transaction Tk can be identified by, 
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Finally, the actual real power flow in branch 
between bus i and j can be represented in terms of 
transaction pairs as, 

∑
=

=
nt
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)Tk(
)ij(branchbranch(ij) PP                      (6) 

The proposed usage allocation technique is 
applicable for all general networks. An iterative scheme 
based on classical AC power flow technique can be 
summarised in the flow chart shown in Figure 1. Vector 

 is used as a target in the training process of the 

proposed ANN.  

(Tk)
branch(ij)P

3. ANN ARCHITECTURE 

An artificial neural network can be defined as a data 
processing system consisting of a large number of 
simple, highly interconnected processing elements 
(artificial neurons) in an architecture inspired by the 
structure of the cerebral cortex of the brain [19]. The 
processing elements consist of two parts. The first part 
simply sums the weighted inputs; the second part is 
effectively a nonlinear filter, usually called the 
activation function, through which the combined signal 
flow. These processing elements are usually organized 
into a sequence of layers or slabs with full or random 

connections between the layers. The input layer is a 
buffer that presents data to the network. The output layer 
presents the output response to a given input. The other 
layer is called the intermediate or hidden layer because it 
usually has no connections to the outside world. 
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Fig. 1. The flow chart of line usage allocation. 

Neural network perform two major functions 
which are training (learning) and testing (recall). 
Training is the process of adapting the connections 
weights to produce the desired output vector in response 
to a stimulus vector presented to the input buffer. 
Testing is the process of accepting an input stimulus and 
producing an output response in accordance with the 
network weight structure. Testing occurs when a neural 
network globally processes the stimulus presented at its 
input buffer and creates a response at the output buffer. 
Testing is an integral part of the training process since a 
desired response to the network must be compared to the 
actual output to create an error function. A fully 
connected feedforward ANN has been utilized in this 
project under MATLAB platform. 
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Structure of the Proposed Neural Network for 6 bus 
system 

In this work, 3 feedforward neural networks are utilized. 
Each network corresponds to a single contracting 
generator in the test system and each consists of one 
hidden layer and a single output layer. This realization is 
adopted for simplicity and to reduce the training time of 
the neural networks. All discussions on designing of 
each of these ANN below is for the six bus test system 
as shown in Figure 2 [20]. This system consists of 3 
generators located at buses 1, 2, and 3 respectively. 

They deliver power to 3 loads, through 11 lines located 
at buses 4, 5, and 6 respectively. For the purpose of 
analysis it is assumed that each generating bus or load 
bus is associated with a single transaction and load 
patterns of each sinking buses remain constant for a 
particular hour. This means that this system can have six 
different combinations of 3 transaction pairs for every 
hour as shown in Table 1. With this initialization, the 
input samples for training is assembled by obtaining the 
operating point of the system that reflects the transaction 
balance equations (1) for particular combination of 3 
transaction pairs for that hour. 

 
 
 

 
Fig. 2. Single line diagram for the 6-bus system. 

 
 

Table 1. Different possible combinations. 

Combination Transaction pairs (MW) 

1 
From gen. at bus 1 

to load at bus 4 
g1
d4P  

From gen. at bus 2 
to load at bus 5 

g2
d5P  

From gen. at bus 3 
to load at bus 6 

g3
d6P  

2 
From gen. at bus 1 

to load at bus 4 
g1
d4P  

From gen. at bus 2 
to load at bus 6 

g2
d6P  

From gen. at bus 3 
to load at bus 5 

g3
d5P  

3 
From gen. at bus 1 

to load at bus 5 
g1
d5P  

From gen. at bus 2 
to load at bus 4 

g2
d4P  

From gen. at bus 3 
to load at bus 6 

g3
d6P  

4 
From gen. at bus 1 

to load at bus 5 
g1
d5P  

From gen. at bus 2 
to load at bus 6 

g2
d6P  

From gen. at bus 3 
to load at bus 4 

g3
d4P  

5 
From gen. at bus 1 

to load at bus 6 
g1
d6P  

From gen. at bus 2 
to load at bus 4 

g2
d4P  

From gen. at bus 3 
to load at bus 5 

g3
d5P  

6 
From gen. at bus 1 

to load at bus 6 
g1
d6P  

From gen. at bus 2 
to load at bus 5 

g2
d5P  

From gen. at bus 3 
to load at bus 4 

g3
d4P  

 

In the meantime, target vectors that resembles the line 
usage of each transacting generator is also obtained 
using the method discussed in section 2. This procedure 

is repeated for all six combinations in duration of 24 
hours with different load patterns. Input data (D) for 
developed ANN contains independent variables such as 
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real power generation (Pg1 to, Pg3), reactive power 
generation (Qg1 to, Qg3), real power demand (P4 to P6), 
reactive power demand (Q4 to Q6), bus voltage 
magnitude (V4 to V6), real power for line flows (Pline1 to 
Pline11), reactive power for line flows (Qline1 to Qline11)   
and the target/output parameter, (T) contains generator 
contribution to all line flows which corresponds to 11 
output neurons. Table 2 summarize the description of 
inputs and outputs of the training data for each ANN. 

Structure of the Proposed Neural Network for modified 
IEEE-14 bus system 

Five fully connected feed forward neural networks are 
utilized to obtain line usage allocation results for the 
modified IEEE 14-bus system as shown in Figure 3. 

Each network corresponds to a single contributing 
generator to the line flows and each consists of one 
hidden layer and a single output layer. This realization is 
adopted for simplicity and to reduce the training time of 
the neural networks. This system consists of 5 
generators located at buses 1, 2, 3, 6, and 8 respectively. 
They deliver power to 9 loads, through 20 lines located 
at buses 4, 5, 7, 9 to 14 respectively. In this case study, 
structure and description of input and output of each 
ANN is similar to those of the 6 bus system. The five 
simultaneous bilateral transactions are obtained by 
allowing five generators to transact directly with five 
bundled consumer groups. Table 3 shows the details of 

transaction pairs between market participants for the 
modified IEEE 14-bus system. 

 

 
Fig. 3. Single line diagram for the modified IEEE-14 

bus system. 
 

For the purpose of ANN based method, target 
vectors that resembles the line usage of each transacting 
generator is obtained using the same circuit method 
discussed in Section 2. 

 
 

Table 2. Description of inputs and outputs of the training data for each ANN. 

Input and Output (layer) Neurons Description (in p.u) 
I1 to I3 3 Real power generations 
I4 to I6 3 Reactive power generations 
I7 to I9 3 Real power demand 

I10 to I12 3 Reactive power demand 
I13 to I15 3 Bus voltage magnitude 
I16 to I26 11 Real power for line flows 
I27 to I37 11 Reactive power for line flows 

O1 to O11 11 Generator contributions to line real power flows  
 
 

Table 3. Transaction pairs for the modified IEEE 14-bus system.

Transaction pairs From generator To load 

T1 1g
14,13,9,4dP  1 4,9,13,14 

T2 2g
12,7dP  2 7,12 

T3 3g
5dP  3 5 

T4 6g
11dP  6 11 

T5 8g
10dP  8 10 
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Training 

Neural networks are sensitive to the number of neurons 
in their hidden layer. Too few neurons in the hidden 
layer prevent it from correctly mapping inputs to 
outputs, while too many may impede generalization and 
increasing training time. Therefore number of hidden 
neurons is selected through experimentation to find the 
optimum number of neurons for a predefined minimum 
of mean square error and compromise with the lowest 
number of epochs in each training process. To take into 
account the nonlinear characteristic of input (D) and 
noting that the target values are either positive or 
negative, the suitable transfer function to be used in the 
hidden layer is a tan-sigmoid function. Non linear 
activation functions allow the network to learn nonlinear 
relationships between input and output vectors. 
Levenberg-Marquardt algorithm has been used for 
training the network. 

After the input and target for training data is 
created, it can be made more efficient to scale 
(preprocessing) the network inputs and targets so that 

they always fall within a specified range. In this case the 
minimum and maximum value of input and output 
vectors is used to scale them in the range of -1 and +1. 
Next step is to divide the data (D and T) up into training, 
validation and test subsets. In the 6 bus test system, 86 
samples (60%) of data are used for the training and 29 
samples (20%) of each data for validation and testing. 
Table 4 shows the numbers of samples for training, 
validation and test data for the 6 bus test system. 
Subsequently, 14 samples (60%) of data are used for the 
training and 5 samples (20%) of each data for validation 
and testing in the modified IEEE 14-bus system. Table 5 
shows the numbers of samples for training, validation 
and test data for the modified IEEE 14-bus system. The 
error on the training set is driven to a very small value 
(to achieve the mean square error (goal)). One of the 
problems that occurred during neural network training is 
called overfitting or memorization. 

 
Table 4. The numbers of samples for training, validation and test set for the 6 bus test system. 

Data types Number of samples  
(Transaction Pairs) 

Training 86 

Validation 29 

Testing 29 
 
 

Table 5. The numbers of samples for training, validation and test set for the modified IEEE-14 bus system. 
Data types Samples (Hour) 
Training 1,6,11,16,21,3,8,13,18,23,5,10,15,20 

Validation 2,7,12,17,22 
Testing 4,9,14,19,24 
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Fig. 4. Training, validation and test curve with 50 hidden 

neurons for the 6-bus system. 
Fig. 5. Training, validation and test curve with 50 hidden 

neurons for the modified IEEE 14-bus system. 
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It happens when a new data is presented to the trained 
network, the calculated output error become much larger 
than acceptable. The network has memorized the 
training samples, but it has not learned to generalize to 
new situations. Validation sets is used to avoid 
overfitting problem. The test set provides an 
independent measure of how well the network can 
perform on data not used to train it. Figure 4 shows the 
performance of the training for the ANN with 50 hidden 
neurons of the 6 bus test system. From Figure 4, it can 
also be seen that the training goal is achieved in 20 
epochs with a mean square error of 3.36157× 10-10. 

Here again the performance of the training for the 
ANN with 19 hidden of the modified IEEE 14-bus 
system is shown in Figure 5.  

The training goal is also achieved in 5 epochs with 
a mean square error of 4.95 4×10-15. The results of 
each training for the ANN is reasonable, since the test 
set error and the validation set error have similar 
characteristics, and it doesn’t appear that any significant 
overfitting has occurred. The same network setting 
parameters is used for training the other 2 networks for 
the 6 bus system as well as the other 4 networks for the 
modified IEEE 14 bus system. 

Pre-Testing and Simulation 

After the networks have been trained, next step is to 
simulate the network. The entire sample data is used in 
pre testing. After simulation, the obtained result from 
the trained network is evaluated with a linear regression 
analysis. The regression analysis for the trained network 
that referred to contribution of generator at bus 1 to line 
flow (P1-2) caused by each transaction pairs is shown in 
Figure 6. The correlation coefficient, (R) in this case is 
equal to one which indicates perfect correlation between 
conventional method and output of the neural network. 
The best linear fit is indicated by a solid line whereas the 
perfect fit is indicated by the dashed line. 

Next, similar results is obtained on regression 
analysis of the modified IEEE 14-bus system for the 
trained network that referred to contribution of generator 
at bus 2 to line flow (P2-4) as shown in Figure 7.  7

Daily load curves for the 6 bus system and the 
target patterns for  as depicted in Table 1, are given 
in Figure 8 and Figure 9 while the daily load curves for 
the modified IEEE 14-bus system and the target patterns 
of generator at bus 1 (T1) are given in Figure 10 and 
Figure 11. 

g1
d4P

 

0 0.1 0.2 0.3 0.4
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Target

O
ut

pu
t

R = 1

Sample Data Points
Best Linear Fit
Output = Target

 
0.12 0.14 0.16 0.18 0.2 0.22

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

Target

O
ut

pu
t

R = 1

Sample Data Points
Best Linear Fit
Output = Target

 
Fig. 6. Regression analysis between the network output and 

the corresponding target for the 6-bus system. 
Fig. 7. Regression analysis between the network output and the 

corresponding target for the modified IEEE 14-bus system. 
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Fig. 8. Daily load curves for the 6 bus test system. 
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Fig. 9. Target patterns of generator 1 for first combination within 24 hours. 
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Fig. 10.  Daily load curves for the modified IEEE 14-bus system 
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Fig. 11.  Selected target patterns of generator at bus 1 (T1) within 24 hours. 

 
 
4.  RESULT AND ANALYSIS  

The case scenario is that the real and reactive power at 
each load to increase up to 10% from hour 1 to 24, from 
the nominal trained pattern for the 6 bus test system. 
Figure 12 shows the line usage allocation results for 

by the proposed method along with the result obtained 
through to Circuit method for line flows P1-2, P1-4, P1-5, 
P2-4, and P4-5 within 24 hours. Results obtained from the 
proposed method are indicated with lines having circles 
and the solid lines represent the output of the Circuit 
method. From Figure 12, it can be observed that the 

g1
d4P  
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developed ANN can allocate line usage to generator 
involved in transactions with very good accuracy, 
almost 100 %. In this simulation, ANN computes the 
output within 7.85 msec whereas the Circuit method 
took 3713 msec for the same combination of transaction 
pairs for 24 hours. Therefore it can be concluded that the 
ANN is more efficient in terms of computation time. 

From Figure 12, it can be seen that the generator 1 
use more power in line P1-4 compared to the other line 
due to this transaction, . Figure 13 shows the effect 
of change of transaction pairs on decoupled line flows 
for generator 3.  

g1
d4P

From Figure 13, it can be observed that the line 
usage of this generator shows similar pattern when it 
transacts power to the same load. For example, no much 
variation is observed in line flow in combination number 
1 and 3. In these cases generator 3 always transacts 
power to load at bus 6 while the other 2 loads changes 

its supply generator to either to generator 1 or 2. 
However, when the generator 3 changes its customer, a 
large variation in decoupled line flow due to this 
generator is observed. For instance, when generator 3 
changes its customer from load 6 to load 4, the flow 
direction in most of the lines corresponds to this 
generator reverses it direction. Finally, allocation of real 
power to line flows using proposed ANN on hour 8 is 
presented in Table 6 along with the result obtained 
through load flow solutions. Note that the result 
obtained by the proposed ANN in this paper is compared 
well with the result of actual power flow. The total line 
flows from the proposed method are evaluated by 
summing each of decouple line flows due to transaction 
pairs. The difference of total line flows of the proposed 
method with the actual flow is very small which are less 
than or equal to 0.019 MW. 
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Fig. 12. Line usage allocation result for  within 24 hours. g1
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Fig. 13. Effect of change of transaction pairs on line usage due to generator 3. 
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Table 6. Analysis of line usage allocation on hour 8 for the 6-bus system. 

Line flows 

From To 

Actual flow 
(MW) 

g1
d5P = 30.839 

(MW) 

g2
d6P = 57.618 

(MW) 

g3
d4P = 67.37 

(MW) 
Total 
(MW) 

1 2 -0.396 9.339 -3.432 -6.300 -0.393 
1 4 22.107 8.753 -1.311 14.678 22.119 
1 5 9.123 12.895 4.722 -8.502 9.115 
2 3 -6.622 3.340 14.742 -24.693 -6.611 
2 4 41.920 -3.590 4.932 40.581 41.923 
2 5 9.117 5.828 7.573 -4.292 9.108 
2 6 13.124 3.757 27.358 -17.975 13.140 
3 5 17.189 3.750 -5.001 18.421 17.170 
3 6 45.286 -0.436 19.769 25.965 45.298 
4 5 -4.371 5.028 3.527 -12.933 -4.379 
5 6 -0.278 -3.351 10.867 -7.780 -0.265 

 
 

Note that, in Table 6 there are some transactions 
that creates counter flows in some lines. For example, 
transaction pair produces opposite flows in line P1-2, 
P2-3, P2-4, P3-6, and P4-5. This helps to improve the line 
capacity use in the system. 

g1
d5P

The proposed method has been extended to the 
modified IEEE 14-bus system to demonstrate the 
strength of the method. In this case, 10% decrease in 
load pattern is realized. The line usage allocation results 
referred to transaction pairs (T1) for line flows P3-4, P6-

11, P6-12, P6-13, P7-8, P10-11, and P12-13 within 24 hours is 
shown in Figure 14. 

Similar to the 6 bus system, results obtained from 
the ANN are indicated with line having circles and the 
solid lines represent the output of the Circuit method. In 
this case, the results show that the developed ANN can 

allocate real power transfer between generators and line 
flows with very good accuracy, almost 98%. 

From Figure 14, it can be seen that the generator 1 
making more usage of line flow P6-13. For this 24 hours 
(samples) simulation, ANN computes the output within 
16 msec whereas the Circuit method took 5765 msec for 
the same simultaneous bilateral trades (T1). The bus 
data for the modified IEEE 14-bus system on hour 9 is 
given in Table 7 which represents load demand and 
generation involved in bilateral trades. The final 
allocation of real power to line flows using proposed 
ANN on hour 9 out of 24 hours is presented in Table 8 
along with the result obtained through Circuit method as 
given in Table 9. 
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Table 7. Bus data for the modified IEEE 14-bus system on hour 9. 

Voltage Generation Load 
Bus 
no. Magnitude 

(p.u) 
Angle 
(p.u) 

Real 
(MW) 

Reactive 
(Mvar) 

Real 
(MW) 

Reactive 
(Mvar) 

1 1.045 0 193.69 32.762 0 0 
2 1.02 -3.55 42.01 23.028 0 0 
3 1.02 -6.049 28.359 23.332 0 0 
4 0.953 -10.22 0 0 58.604 5.951 
5 0.956 -9.248 0 0 26.852 7.661 
6 0.9 -21.60 24.991 8.065 0 0 
7 0.9463 -17.73 0 0 17.658 3.181 
8 1.03 -13.60 39.923 50.38 0 0 
9 0.905 -23.53 0 0 50.139 14.193 

10 0.885 -25.23 0 0 30.496 3.078 
11 0.872 -25.01 0 0 24.381 5.643 
12 0.848 -25.74 0 0 24.098 5.472 
13 0.850 -25.818 0 0 35.073 7.866 
14 0.833 -29.23 0 0 41.837 4.446 

 
 

Table 8. Analysis of line usage allocation on hour 9 by the ANN for the modified IEEE 14-bus system. 

ANN Output (Transaction Pairs) Line 
flows 

From To 

Actual 
flow 

(MW) 
T1 

(MW) 
T2 

(MW) 
T3 

(MW) 
T4 

(MW) 
T5 

(MW) 

Total 
Flow 
(MW) 

1 2 114.820 126.700 -7.900 -3.450 0.166 -0.260 115.20 
1 5 78.871 66.200 7.917 3.707 -0.14 1.012 78.69 
2 3 21.808 26.510 6.641 -11.300 0.147 -0.310 21.63 
2 4 70.429 54.250 13.950 1.834 0.333 -0.220 70.14 
2 5 62.234 42.550 13.380 6.057 -0.300 0.471 62.15 
3 4 49.943 26.860 6.819 16.510 0.149 -0.450 49.88 
4 5 -35.17 -50.000 -2.980 16.790 -2.790 3.897 -35.10 
4 7 56.368 44.950 16.780 0.587 2.086 -8.330 56.07 
4 9 35.682 25.780 6.285 0.341 1.183 1.931 35.52 
5 6 73.076 55.740 18.13 -0.910 -3.27 3.267 72.94 
6 11 24.281 5.616 -2.690 -0.580 18.41 3.394 24.15 
6 12 24.926 10.790 14.060 -0.070 0.578 -0.340 25.00 
6 13 48.853 40.590 7.448 -0.290 2.122 -1.030 48.83 
7 8 -39.920 0 0 0 0 -39.90 -39.90 
7 9 78.625 47.570 -0.110 0.620 2.301 28.300 78.68 
9 10 31.751 -5.670 2.677 0.589 6.322 27.910 31.82 
9 14 32.407 29.670 3.628 0.384 -2.670 1.476 32.48 

10 11 0.8265 -5.580 2.669 0.572 6.279 -3.120 0.807 
12 13 -0.189 10.170 -10.500 -0.070 0.520 -0.350 -0.32 
13 14 11.536 14.280 -3.450 -0.360 2.579 -1.470 11.57 

 
 

As expected, the sum of the real power allocation 
to line flows obtained from Circuit method is in 
conformity with the actual power flow. Note that the 

result obtained by the ANN output is compared well 
with the result of Circuit method. The total line flows 
from the proposed method are evaluated by summing 



         M.W. Mustafa, et al. / International Energy Journal 11 (2010) 29-42 40 

each of decouple line flows due to transaction pairs. The 
difference of total line flows of the proposed method 
with the actual flow  
is small which are less than or equal to 0.3951 MW.  

A close look at the both test system shows the 

ANN output compares well to that of the actual power 
flows (target). Note that, in Table 8 there are some 
transactions that creates counter flows in some lines.  
For example, transaction pairs (T1) produces opposite 
flows in line P9-10, P10-11, and P12-13. 

 
Table 9. Analysis of line usage allocation on hour 9 by the circuit method for the modified IEEE 14-bus system. 

Circuit Method (Transaction Pairs) Line 
flows 

From To 

Actual 
flow 

(MW) 
T1 

(MW) 
T2 

(MW) 
T3 

(MW) 
T4 

(MW) 
T5 

(MW) 

1 2 114.820 126.300 -7.920 -3.460 0.162 -0.260 
1 5 78.871 66.390 7.918 3.703 -0.140 1.001 
2 3 21.808 26.650 6.665 -11.300 0.151 -0.310 
2 4 70.429 54.510 13.970 1.833 0.332 -0.220 
2 5 62.234 42.690 13.380 5.997 -0.300 0.474 
3 4 49.943 26.860 6.812 16.570 0.157 -0.450 
4 5 -35.170 -50.000 -3.040 16.80 -2.79 3.905 
4 7 56.368 45.060 17.030 0.590 2.078 -8.390 
4 9 35.682 25.850 6.366 0.338 1.192 1.935 
5 6 73.076 55.850 18.140 -0.920 -3.280 3.294 
6 11 24.281 5.627 -2.650 -0.570 18.500 3.389 
6 12 24.926 10.78 14.020 -0.070 0.559 -0.340 
6 13 48.853 40.610 7.452 -0.290 2.139 -1.040 
7 8 -39.920 0 0 0 0 -39.900 
7 9 78.625 47.590 -0.110 0.622 2.287 28.240 
9 10 31.751 -5.680 2.697 0.584 6.387 27.770 
9 14 32.407 29.620 3.655 0.382 -2.720 1.479 

10 11 0.8265 -5.580 2.659 0.576 6.313 -3.130 
12 13 -0.189 10.220 -10.500 -0.070 0.526 -0.350 
13 14 11.536 14.260 -3.450 -0.360 2.572 -1.470 

 
 

5. CONCLUSION 

This paper proposes an artificial intelligence technique 
to allocate transmission usage for simultaneous bilateral 
transactions. The developed artificial neural network 
adopts line usage allocation outputs determined by 
Circuit technique as a teacher to train the neural 
networks. The proposed ANN based method provide the 
results in a faster and convenient manner with very good 
accuracy. Accordingly, the proposed method has been 
successfully tested and demonstrated on the 6-bus 
system and also on the modified IEEE 14-bus system. 
The method could be adapted to other larger systems by 
modifying the neural network structure. This technique 
can be used to resolve some of the difficult real power 
pricing and costing issues and to ensure fairness and 
transparency in the deregulated environment of power 
system operation. 
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