M. Anitha, et al. / International Energy Journal (ZD09) 37-44 37

FDR PSO-Based Optimization for Non-smooth Functions
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Abstract —In this paper, an improved structure of the stamb®article Swarm Optimization (PSO), called Fitness
Distance Ratio PSO (FDR PSO) is proposed to sobresmooth test functions. In the conventional PSthad, the
particle’s velocity is updated using cognition asacial components. But it suffers from prematureveogence. To
overcome this drawback, in the proposed algorithmmaddition to cognitive and social component, egelticle also
learns from the experience of the neighboring jpéet that have a better fitness than itself. Thaalestration of the
FDR PSO algorithm was carried out on six bench madt functions and a practical Optimal Power fl¢@PF)
problem. The results of the proposed algorithm eritgmed the solution obtained through the standBR&O. The
minimum solution of OPF problem is also compareiththe results obtained through the other optini@atmethods.

Keywords —Fitness distance ratio particle swarm optimizatioon-convex fuel cost functions, optimal powemf|o
optimization.

1. INTRODUCTION Laskari et al. [4] investigated the ability of PSO
method to cope up with minmax problems through
The objective of optimization is to seek valuesdet of experiments on  well-known test functions. The
parameters that maximize or minimize the objectivqjerformance of PSO is compared with that of other
function subjected to various constraints. In pcagt optimization methods. Pongchairerks and
optimization problems become more and mor&achitvichyanukul [5] proposed two non-homogeneous
complex. To search an optimum of a function withpso algorithms based on a structure that is bujlt b
continuous variables is difficult, if there are geaand combining  previously  published  structures. The
valleys. In these cases, traditional optimizatioatimds algorithms were tested using benchmark test funstio
fail to provide global optimum solution. They waither Peremet al. [6] introduced the FDR PSO algorithm
be trapped to local minima or need much more searqy combat the problem of premature convergencedfage
time. In recent years, many researchers have bg®Wt the standard PSO. The algorithm is shown to ofdper
to propose new algorithms to solve such complesSo on many benchmark problems. Liang and Sugantha
optimization problems. [7] introduced a novel dynamic multiswarm PSO based
Teo[1] augmented the Generalised Generation Gagjyiding the population into many small swarms ahnen
(GY) algorithm with adaptive and mutation operations t regrouping the swarms. The effectiveness of thpgsed
improve its performance for solving multimodal method is validated on benchmark problems. Lianhgl.
optimization problems. The effectiveness of thepps®d  [g] proposed Comprehensive Learning Particle Swarm
algorithm has been demonstrated on five benchnesi t Optimization (CLPSO) which uses a new learningtstrg
problems with highly deceptive fitness landscapéso o make the particles have different learning exensgfor
and Liu [2] proposed a Fast Evolutionary gifferent dimensions. The authors conducted expamtm
Programming (FEP) which uses a Cauchy instead @fn benchmark functions with and without coordinate
Gaussian mutation operator to overcome the drawb&ck (otations.
EP such as slow convergence. The SUItablllty and This paper proposes the solution techniques for
performance of the FEP algorithm is validated dfecént gifferent modal functions and a practical OPF peabito
function optimization problems. Liand Jiang [3]yalidate the FDR PSO technique. Optimal power flow
introduced a new stochastic approach based on propgroplem is one of the important optimization proftein
integration of Simulated Annealing algorithm (SAA), power system which is aimed to optimize steadyestat
Genetic Algorithm (GA) and Chemotaxis Algorithm (LA performance of the power system with respect to the
for solving complex optimization problems. The ppepd  gpjective of minimum operating cost while subjected
approach has been applied to solve such problems @grious operating constraints. Nowadays, poweresyst
scheduling, training of artificial neural networksd the planners and operators often use OPF as a powerful

optimization of complex functions. assistant tool in both planning and operating stitgy
traditional optimization methods, including nondar
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when the search space is non-linear
discontinuities such as valve point loading effedtel
switching and prohibited operating zones, thesehoux
become difficult to solve with a slow convergenegia
and not always seeking to the optimal solution [11]

and has
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3. Sum of different powers
. n .
Min f(x) = Z| X, |'+1 3)
i=1

where — I x; < 1.

It is therefore becomes necessary to develop new,

more general and reliable algorithms, which arexbapof
incorporating new constraints arising from non-sthoo
solution surfaces. Many heuristic search algorithsueh

as Genetic Algorithms, Evolutionary Programming, [9]

[10], Tabu Search, Simulated Annealing [11] haverbe

proposed by many authors to solve OPF problem.élhes

technigues searched for the global optimum for pge

of objective function subjected to various types of

constraints. Moreover, many hybrid algorithms haeen
introduced to enhance the search efficiency. Fstairce,
a hybrid PSO-Sequential Quadratic
algorithm was used to solve power dispatch probiétin
units having valve point loading effect [12].

In this paper,
namely Fitness Distance Ratio PSO is proposed lte so
the problems with non-convex, non-continuous agthllyi
non-linear solution space. Initially, the propose®R
PSO method is validated with benchmark problemenTh
it deals with the implementation of the proposegbethm
to solve OPF problem considering three differeel fiost

functions and the results are compared with other

optimization methods.

2. PROBLEM FORMULATION

Generally, in the modal functions, the number afalo
minima increases with respect to the nature/ diioansf
the problem. The functions of the bench mark probéee
unimodal, continuous, discontinuous, non-differaini
and multimodal in nature. In this paper, to prove t
effectiveness of the proposed algorithm, differtgpes of

benchmark equations and a practical OPF problem afe

considered and given below.

Programming

a new variation of PSO method,

This is a commonly used unimodal test function.

4. Rotated hyper-ellipsoid
}2

where — 65.538 x; < 65.356.

Min f(x)= Zn:{z':xj (4)

i=1{ =1

5. Rosenbrock’s Valley (Banana function)

n-1
Min f(x) = 3'100% (X;,, = X7)* + L-x;)* (5)
i=1

where — 2.04& x; < 2.048.

The above equation has global optimum in a long,
narrow, parabolic shaped valley. To find the cogeece
to the global optimum is difficult. Hence this iffem used
in assessing the performance of the optimization
algorithm.

6. Griewangk’s function

Min f(x) = n 1
inf(x) = '—14 00 nco{\[}+

where —60( x; < 600.

Griewangk’s function is a multimodal problem and
the location of minima is regularly distributed.

The following subsection describes about the
formulation of practical optimal power flow problem

(6)

Power System Problem

OPF problem seeks to optimize steady state perfuzena

A. Benchmark Problems with respect to a non-linear/ non-smooth objective
. function. In the OPF problem, it is required to imiize
1. De Jong's Function 1 the total operating cost of the generating unitsilavh
n satisfying the system constraints.
Min f(x) = z X-Z ) The objective function is mathematically stated as:
- |
i=1 N
F=Min » f, (P $/hr 7
where -5.1X x; < 5.12. Izl: B "
This simple test function is continuous, convex and
unimodal where, F is the total optimal cost of generation,

2. Axis parallel hyper-ellipsoid
n

Min f(x) = > i Ox? )
i=1

where -5.1X x; < 5.12.

fi(P) is the fuel cost of the‘higenerator, P is the real
power generation of the"i generator, N is the total
number of generators connected in the system debj¢c
the equality constraint in real power balance.

ZN:Pi—PL—PD=O (8

i=1

This function, also known as weighted sphere model,

is continuous, convex and unimodal.

where R is the total load of the system and B the
transmission losses of the system.

In this paper, three different fuel cost functiafishe
generators are considered and they are given below.
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Quadratic cost function: Vi = W * Vigk + Crrand1*(Pg — Xiq)
fi(P) =a+bP, + G p2 (9) + grand2 * (Fyg —Xia) (17)
Xid*h = X + Vig*! (18)

where, a b and ¢ are the fuel cost coefficients andide
the real power generation &t iinit. This function is non- where, G and G are the acceleration constants, which
linear in nature. represent the weighting of stochastic accelerateoms
that pull each particle towards,.R and @ges: positions,
while k represents the current iteration and raadd
fi(P) =a+hP +GP2.d, sinE P™ -P)) (10 ran_d2 are two random numbers in the range [0,artiay
weight (W) is a control parameter that is used dotiol

where, ¢ and g are fuel cost coefficients of th& unit ~ the impact of the previous velocities on the curreme.
with valve point effects. This function is non- Hence, it influences the trade-off between the gland

Sine component function:

differentiable one. local exploration abilities of the particles. Theasch
. . ) ) process will terminate if the number of iteratioesches
(P) = +  + g, P2 fP<P<
iP)=a+hP+aps  ITR<R<R 4. FDR PSO ALGORITHM
=g, + P + G P?; ifP,<P <R, In the literature, it has been proved that the igiart
positions in PSO oscillate in damped sinusoidal egav
=am + bnP + G pi?; if Pma<P <P (11) until they converge to points in between their pvas

Poestand @est pOsitions [14], [15]. During this oscillation,
where, &, bm, Gn are fuel cost coefficients of"i if a particle reaches a point which has bettere&tthan
generator with M fuel and P, P are minimum and its previous best position, then the particle curgs to
o move towards the convergence of the global bestipos
discovered so far. All the particles follow the sam
behavior to converge quickly to a good local optimu
Suppose, if the global optimum of the problem dnes
lie on a path between original particle positiond auch a
local optimum, then the particle is prevented from
effective search for the global value. In such saseany
Pimin< P € Pmax, i=1,2....n (12) of the particles are wasting their computationdbrefin

. seeking to move towards the local optimum alread
Qimn< Q< Qtmax, 1=1,2...n (13) discovgred. Better results may be obtzined if werio g
Vimin< Vi< Vimax, i=1,2.. n (14) particles explore other possible search directions.
In the FDR PSO algorithm, in addition to the Socio-

maximum level power generation of tiegenerator. The
above function is discontinuous in nature.

The generator inequality constraints include ital re
power outputs (f, reactive power outputs (Q voltage
magnitudes () and voltage angles6i}. They are
restricted by their lower and upper limits as falto

O min < 0 < O max, i=1,2..n (1%) cognitive learning processes, each particle alsonke
Line flow inequality constraint is given as: from the experience of neighboring particles thaveha
better fitness than itself [6]. This approach resuh
Li < Loimax (16) change in the velocity update equation, althougé th
where, ls max is the maximum line flow limit (MVA) of ~Position update equation remains unchanged. &ctel
the " transmission line. only one other particle at a time when updatingheac
velocity dimension and that particle is chosen atisy
3. OVERVIEW OF PARTICLE SWARM the following two criteria.
OPTIMIZATION 1. It must be near the current particle.
In 1995, Kennedy and Eberhart first introduced B&0 2. It should have visited a position of higher fitness
method which is motivated by social behavior of ) _ )
organisms such as fish schooling and birds flockirg]. The simplest way to select a nearby particle which

In a PSO system, particles fly around a ‘d’ dimenai ~ Satisfies the above mentioned two criteria is that
problem space. During flight, each particle adijuisss maximizes the ratio of the fithess difference te tne-
position according to its own experience as welbyashe dimensional distance. In other words, tffedimension of
best experiences of other neighboring particleg. us the " particle’s velocity is updated using a particldiezh
consider X= (Xi1,Xi2, ... Xa)and V(= (Viy Vo, .. Vig) the nes, With prior best position ;P It is necessary to
be the position and velocity of th8 particle. Velocity maximize the following Fitness Distance Ratio whish
V4 is bounded between its lower and upper limits. Thé&iven by:

best previous position of th& particle is recorded and is _

given by Besi= (R, P2, .. Pg). Let Gesi= (Pyu.Pe, ... COSt(Pj) Cos(X,) (19)
Pysid) be the best position among all individual best ‘F’Jd —Xid‘

positions achieved so far. Each particle’s veloatyd

position is updated using the following two equasio In the FDR PSO algorithm, the particle’s velocity

update is influenced by the following three factors
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START

v

Initialize position X, associated velocities V, Bband gbest of the
population, set k = 0.

v

n best = P best

A 4

»
»

!

i=1

A

<

d=1

Vig = W X \g

Xia = Xia + Via

+C xvrand:id x (P tesig — Xiq)
+ ¢ x rand?y x (g besf— Xiq)
+ gz x rand3; x (n best— Xiq)
Vig= MiN (Vinaxs Max (-Vinaxs Via))

K +1

n best = max

Cost (- Cost (%)

| jlup Xig
=i+l
d=d+" [g d<D
Yes
No
Pbest=X |« YOS Fit (X;) > Fit (Pbes} >
Na No
Fit (X;) > Fit (g bes)
Yes >\r
g best=X; Y i<ps \Yes >
NOTE
No PS — Population size
< Yes K < max ge K — generation counter from 1 tq
-9 max_ gen
NA d — dimension
w — inertia weight
END Xiq— " particle’s " dimensior

Fig. 1. Flow diagram — FDR PSO algorithm.

best Res:0f all particles.

neighbor i.e. pus

Hence, the new velocity update equation becomes:

Previous best experience i.g.sPf the particle.

Best global experience i.e,g, considering the

Previous best experience of the “best nearest” ) . )
where, Ry is the nearby particle that have better fithess.

Vig“™h = WAV + Crrrand 1*(Py—Xia)
+ Gfrand2*(Pyig —Xia)

+ Gg*rand3* (Pyg- Xiq)

(20)

The position update equation remains the same as in

is given in Figure 1.

Equation 18. The flow diagram of the FDR PSO altoni
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5. SIMULATION RESULTS AND DISCUSSION algorithm suits well in the initial iterations bfails later.
The optimum solutions for six different types of dab The average and best fithess characteristics réivagathe
functions and a power flow problem are obtainedhis proposed FDR PSO method IS less  susceptible  to

Apremature convergence and less likely to get imodcal

section using swarm intelligence techniques. o . . S .
. . minimum of the function being optimized. Thus it
comparative performance of the conventional PSO and

FDR PSO methods are also illustrated. All the satiah outperforms the standard PSO.
studies were carried for 30 numbers of trials. Theye Table 1. Minimum solution - bench mark problems.
carried out on P-IV, 3 GHz system in MATLAB Optimization F ) Minima achieved
; timization Function
environment. p PSO FDR PSO

e Jong 0.0134 2.047e-6
xis parallel hyper

A. Benchmark problems D
The simulation parameters and constants for PSO an%

FDR PSO methods are given in Appendix | and Il. The .~ " 3.42e-5 7.105e-12

) e . ellipsoid
obtained minimum solution of the complex modal 4 ellinsoid
functions using both by PSO and FDR PSO methods is<ctated ellipsol 5.846e-4 7.902e-8
given in the Table 1. From this table, it is inf=fithat the =~ Rosenbrock 1.942e-6 1.409e-12
results obtained by both of these methods are cldtte Griewangk 0.4993 7.178e-11
each other. To illustrate the convergence, the Isitiom
characteristics of Rosenbrock’s function (a narrow Sum of pawers 1.337e-11 2.755e-33

solution surface) obtained through these methodgven
in Figures 2 and 3. It is also observed that th®© PS

— Best Fithess
=== Ayg-Fitness

Minima achieved

10 I I I I I I I I I
a0 100 1500 200 250 300 350 400 450 500
Mao. of generations

Fig. 2. Best and average fitness characteristicSO technique.

—— Best Fitness
=== Ayy-Fithess

Minima achieved

10 I I I I I I I I I
a0 o]0 1500 2000 250 300 350 400 450 500
Mao. of generations

Fig. 3. Best and average fitness characteristicskbDR PSO technique.
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B. Power system problem posses sine function and the later is piecewiseature.
The structure of these non-smooth functions is rgiie
the Il section of this paper. The optimal solutwmstained
through PSO and FDR PSO methods and their
corresponding minimum costs are given in Table de T

IEEE — 30 bus power system is considered to descthié®
optimal solution obtained by swarm intelligence hoets.
It consists of six generators, 41 transmissionslirk tap

changing transformers and 2 Var sources. The loask . .
. : . . results of these techniques are also compared atfitér
of the system is 283.4 MW. The details of simulatio S . .
ptimization  technique called as Evolutionary

parameters, population size and maximum number cgrogramming (EP), to prove its validity. In additito the

generations which decide the execution time ofstiarm S . :
; . . . - minimum cost of generation, settings of the germesatnd
intelligence methods are given in Appendix Ill. SBdata, . o

the corresponding convergence characteristics @f th

line data of the test system were taken from [d]he : -
- . . techniques are also obtained for all the three tfans
generator real power limits and cost -coefficients . . - .
. - . which are given in Figures 4 and 5 respectivelyoni-the
corresponding to three fuel cost functions are mive

Figure 5, it is observed that after the consideratmber

Tables 2 and 3. The PSO methods were used to solv{ag . - -
X ; : of generations, the solution of the algorithm beesm
optimal power flow problem of this practical power

. . . - constant that ensures the algorithm’s convergePoaier
system problem. While solving this problem, theusoh .
. o . system losses are determined through the power flow
must satisfy the transmission and generator cdnttra

The equality and inequality constraints are desetiin solution. It is obtained through Newton Raphsorihoe.

the problem formulation section. In the proposedRFD The losses obtained for the three fuel cost funstiwere
PSO algorithm, the dimension of the particles ketaas 7.358 MW, 7.627 MW and 8.218 MW respectively. The

six and a linearly decreasing inertia weight (vonfr0.9 to computation time for the PSO and FDR PSO were found

0.2 is used to obtain the convergence characteyiftb]. tSO ;gﬁ.BlB sec and 4.344 sec respectively in 3 18Hz
Three different fuel cost objective functions were y )

considered while solving the optimal power flow Ipiem

using the swarm techniques. One is quadratic, anathe

Table 2. Generator data and cost coefficients.

Gen P, P Quadratic Valve point loading
No. (MW) (MW) a b c a b c d e
' ($/hr)  ($/MWhr)  ($/IMW?hr)  ($thr)  ($IMWhr)  ($/MW?hr)  ($/hr)  (rad/MW)
1 50 200 0.00 2.00 0.00375 150.0 2.0 0.0016 50.0 0630.
2 20 80 0.00 1.75 0.01750 25.0 2.5 0.0100 40.0 80.09
3 15 50 0.00 1.00 0.006250 0.00 1.00 0.006250 00 0 O
4 10 35 0.00 3.25 0.00834 0.00 3.25 0.00834 0.0 0.0
5 10 30 0.00 3.00 0.02500 0.00 3.00 0.02500 0.0 0.0
6 12 40 0.00 3.00 0.02500 0.00 3.00 0.02500 0.0 0.0
Table 3. Generator cost coefficients for multiple del cost function.
Gen Prin Prnax a b c
No. (MW)  (MW)  ($/hr)  ($/MWhr)  ($/MW?hr)
1 50 140 55.0 0.70 0.0050
140 200 82.5 1.05 0.0075
2 20 55 40.0 0.30 0.0100
55 80 80.0 0.60 0.0200
180
160 - [ Quadratic
140 + B Valve point
<120 | & Multiple fuel
s
27100 |
g
S 80
T 60 -
©
40
20
0
1 2 3 4 5 6
No. of generators

Fig. 4. Optimal generator settings obtained by FDRPSO technique.
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Fig. 5. Convergence characteristics for various fueost functions.

6. CONCLUSION

The effectiveness of the convergence and minimu

solution of the proposed FDR PSO algorithm arededid

T

using standard benchmark and power system problems.

The solution capability of the proposed algorithe i

demonstrated on the above functions which are maa,
non-convex and non-smooth in  nature.

computing and maximizing the ratio of fitness diffiece
to one dimensional distance.
convergence,
continuing in the search space for the global optithe

The8
implementation of this algorithm is also simple by

Avoiding premature
the proposed algorithm allows to be

(9]

convergence of the proposed algorithm is less klkensi
with the nature of objective function.

(1]

(2]

(3]

[4]

[5]

(6]
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APPENDIX

Appendix I: Population sizes and problem dimensionidy in various experiments for PSO and FDR PSO.

Function Population size  Generations Dimensions
De Jong's 10 1000 20
Axis Parallel hyper-ellipsoid 10 1000 10
Sum of Powers 10 1000 10
Rotated hyper-ellipsoid 10 1000 10
Rosenbrock’s 10 1000 2
Griewangk's 10 1000 10

Appendix II: Simulation parameters used in PSO and=-DR PSO.

Parameters / Algorithm C C, Cs
PSO 1.0 1.0
FDR PSO 1.0 1.0 2.0

Appendix Ill: Simulation parameters of PSO and FDRPSO methods.

Parameters/ . . . .
Algorithm C; C, G Population size  Maximum number of generations

PSO 1.0 10 -- 20 750
FDR PSO 10 10 20 20 750




