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Abstract – In this paper, an improved structure of the standard Particle Swarm Optimization (PSO), called Fitness 
Distance Ratio PSO (FDR PSO) is proposed to solve non-smooth test functions. In the conventional PSO method, the 
particle’s velocity is updated using cognition and social components. But it suffers from premature convergence. To 
overcome this drawback, in the proposed algorithm, in addition to cognitive and social component, each particle also 
learns from the experience of the neighboring particles that have a better fitness than itself. The demonstration of the 
FDR PSO algorithm was carried out on six bench mark test functions and a practical Optimal Power flow (OPF) 
problem. The results of the proposed algorithm outperformed the solution obtained through the standard PSO. The 
minimum solution of OPF problem is also compared with the results obtained through the other optimization methods. 
  
Keywords – Fitness distance ratio particle swarm optimization, non-convex fuel cost functions, optimal power flow, 
optimization. 
 
 1. INTRODUCTION 

The objective of optimization is to seek values for a set of 
parameters that maximize or minimize the objective 
function subjected to various constraints. In practice, 
optimization problems become more and more 
complex. To search an optimum of a function with 
continuous variables is difficult, if there are peaks and 
valleys. In these cases, traditional optimization methods 
fail to provide global optimum solution. They will either 
be trapped to local minima or need much more search 
time. In recent years, many researchers have been trying 
to propose new algorithms to solve such complex 
optimization problems. 

Teo [1] augmented the Generalised Generation Gap 
(G3) algorithm with adaptive and mutation operations to 
improve its performance for solving multimodal 
optimization problems. The effectiveness of the proposed 
algorithm has been demonstrated on five benchmark test 
problems with highly deceptive fitness landscapes. Yao 
and Liu [2] proposed a Fast Evolutionary  
Programming (FEP) which uses a Cauchy instead of 
Gaussian mutation operator to overcome the drawback of 
EP such as slow convergence. The suitability and 
performance of the FEP algorithm is validated on different 
function optimization problems.  Li and Jiang [3] 
introduced a new stochastic approach based on proper 
integration of Simulated Annealing algorithm (SAA), 
Genetic Algorithm (GA) and Chemotaxis Algorithm (CA) 
for solving complex optimization problems. The proposed 
approach has been applied to solve such problems as 
scheduling, training of artificial neural networks and the 
optimization of complex functions.  
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Laskari et al. [4] investigated the ability of PSO 
method to cope up with minmax problems through 
experiments on well-known test functions. The 
performance of PSO is compared with that of other 
optimization methods. Pongchairerks and 
Kachitvichyanukul [5] proposed two non-homogeneous 
PSO algorithms based on a structure that is built by 
combining previously published structures. The 
algorithms were tested using benchmark test functions. 

Perem et al. [6] introduced the FDR PSO algorithm 
to combat the problem of premature convergence faced by 
the standard PSO.  The algorithm is shown to outperform 
PSO on many benchmark problems.  Liang and Suganthan 
[7] introduced a novel dynamic multiswarm PSO based on 
dividing the population into many small swarms and then 
regrouping the swarms. The effectiveness of the proposed 
method is validated on benchmark problems.  Liang et al. 
[8] proposed Comprehensive Learning Particle Swarm 
Optimization (CLPSO) which uses a new learning strategy 
to make the particles have different learning exemplars for 
different dimensions. The authors conducted experiments 
on benchmark functions with and without coordinate 
rotations. 

This paper proposes the solution techniques for 
different modal functions and a practical OPF problem to 
validate the FDR PSO technique. Optimal power flow 
problem is one of the important optimization problems in 
power system which is aimed to optimize steady state 
performance of the power system with respect to the 
objective of minimum operating cost while subjected to 
various operating constraints. Nowadays, power system 
planners and operators often use OPF as a powerful 
assistant tool in both planning and operating stage. Many 
traditional optimization methods, including non-linear 
programming, quadratic programming, linear 
programming, mixed integer programming and interior 
point method have been used to solve OPF 
problem. These methods rely on convexity to obtain the 
global optimum solution and as such are forced to 
simplify relationships in order to ensure 
convexity. Traditional methods offer good results but 
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when the search space is non-linear and has 
discontinuities such as valve point loading effects, fuel 
switching and prohibited operating zones, these methods 
become difficult to solve with a slow convergence ratio 
and not always seeking to the optimal solution [11]. 

It is therefore becomes necessary to develop new, 
more general and reliable algorithms, which are capable of 
incorporating new constraints arising from non-smooth 
solution surfaces. Many heuristic search algorithms, such 
as Genetic Algorithms, Evolutionary Programming [9], 
[10], Tabu Search, Simulated Annealing [11] have been 
proposed by many authors to solve OPF problem. These 
techniques searched for the global optimum for any type 
of objective function subjected to various types of 
constraints. Moreover, many hybrid algorithms have been 
introduced to enhance the search efficiency. For instance, 
a hybrid PSO–Sequential Quadratic Programming 
algorithm was used to solve power dispatch problem with 
units having valve point loading effect [12]. 

In this paper, a new variation of PSO method, 
namely Fitness Distance Ratio PSO is proposed to solve 
the problems with non-convex, non-continuous and highly 
non-linear solution space. Initially, the proposed FDR 
PSO method is validated with benchmark problems. Then, 
it deals with the implementation of the proposed algorithm 
to solve OPF problem considering three different fuel cost 
functions and the results are compared with other 
optimization methods. 

2. PROBLEM FORMULATION  

Generally, in the modal functions, the number of local 
minima increases with respect to the nature/ dimension of 
the problem. The functions of the bench mark problem are 
unimodal, continuous, discontinuous, non-differentiable 
and multimodal in nature. In this paper, to prove the 
effectiveness of the proposed algorithm, different types of 
benchmark equations and a practical OPF problem are 
considered and given below.  

A.  Benchmark Problems 

1. De Jong’s Function 1 

  Min f(x) = ∑
=

n
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2
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where -5.12 ≤ xi ≤ 5.12. 
This simple test function is continuous, convex and 

unimodal.  

2. Axis parallel hyper-ellipsoid 
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where -5.12 ≤ xi ≤ 5.12. 
This function, also known as weighted sphere model, 

is continuous, convex and unimodal. 

 

 

 

3. Sum of different powers 
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where – 1 ≤ xi ≤ 1. 

This is a commonly used unimodal test function. 

4. Rotated hyper-ellipsoid 
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where – 65.536 ≤ xi ≤ 65.356. 

5. Rosenbrock’s Valley (Banana function) 
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where – 2.048 ≤ xi ≤  2.048. 
The above equation has global optimum in a long, 

narrow, parabolic shaped valley. To find the convergence 
to the global optimum is difficult. Hence this is often used 
in assessing the performance of the optimization 
algorithm.  

6. Griewangk’s function 
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where –600 ≤ xi ≤  600. 
Griewangk’s function is a multimodal problem and 

the location of minima is regularly distributed. 
The following subsection describes about the 

formulation of practical optimal power flow problem. 

B.  Power System Problem 

OPF problem seeks to optimize steady state performance 
with respect to a non-linear/ non-smooth objective 
function. In the OPF problem, it is required to minimize 
the total operating cost of the generating units while 
satisfying the system constraints. 

The objective function is mathematically stated as:  

F = Min ∑
=

N

1i
ii )P(f        $ / hr           (7) 

where, F is the total optimal cost of generation,            
f i(Pi) is the fuel cost of the ith generator, Pi  is the real 
power generation of the ith  generator, N is the total 
number of generators connected in the system subjected to 
the equality constraint in real power balance. 

0PPP
N

1i
DLi =−−∑

=

                                   (8) 

where, PD is the total load of the system and PL is the 
transmission losses of the system. 

In this paper, three different fuel cost functions of the 
generators are considered and they are given below. 
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 Quadratic cost function: 

f i(Pi) = ai + biPi + ci
2
iP                                (9) 

where, ai, bi and ci are the fuel cost coefficients and Pi be 
the real power  generation of ith unit. This function is non-
linear in nature. 

Sine component function:  

f i(Pi) = ai + biPi + ci
2
iP  + ))PP(esin(d i

min
iii −              (10) 

where, di and ei are fuel cost coefficients of the ith unit 
with valve point effects. This function is non-                 
differentiable one. 

Piecewise quadratic cost function: 

f i(Pi) = ai1 + bi1Pi + ci1
2
iP ;    if iP ≤ Pi < Pi1 

= ai2 + bi2Pi + ci
2
iP ;    if Pi1 ≤ Pi < Pi2 

= aim + bimPi + cim
2
iP ;  if Pim-1 ≤ Pi < iP          (11) 

where, aim, bim, cim are fuel cost coefficients of ith 

generator with mth fuel and iP , iP  are minimum and 

maximum level power generation of the ith generator. The 
above function is discontinuous in nature. 

The generator inequality constraints include its real 
power outputs (Pi), reactive power outputs (Qi), voltage 
magnitudes (Vi) and voltage angles (θi). They are   
restricted by their lower and upper limits as follows:  

Pi min ≤ Pi ≤  Pi max,    i = 1, 2..... n         (12) 

Qi min ≤ Qi ≤  Qi max,   i = 1, 2..... n         (13)  

V i min ≤ V i ≤  Vi max,   i = 1, 2..... n        (14) 

θi min ≤ θi ≤  θi max,   i = 1, 2..... n           (15) 

Line flow inequality constraint is given as: 

Lfi ≤  Lfi max                                              (16) 

where, Lfi max is the maximum line flow limit (MVA) of 
the ith transmission line. 

3.  OVERVIEW OF PARTICLE SWARM  
OPTIMIZATION 

In 1995, Kennedy and Eberhart first introduced the PSO 
method which is motivated by social behavior of 
organisms such as fish schooling and birds flocking [13]. 
In a PSO system, particles fly around a ‘d’ dimensional 
problem space. During flight, each particle adjusts its 
position according to its own experience as well as by the 
best experiences of other neighboring particles. Let us 
consider Xi = (Xi1,Xi2,  …  Xid) and Vi = ( Vi1, V i2,    …   V id ) 
be the position and velocity of the ith particle. Velocity  
V id is bounded between its lower and upper limits. The 
best previous position of the ith particle is recorded and is 
given by Pbesti = (Pi1, Pi2,    ….     Pid ).  Let gbesti = (Pg1,Pg2, …  

Pgid) be the best position among all individual best 
positions achieved so far. Each particle’s velocity and 
position is updated using the following two equations. 

 

V id
k+1 = W * V id

k + C1*rand1*(Pid – Xid)  

                  + C2*rand2 * (Pgid –Xid)        (17) 

X id
k+1 = Xid

k + Vid
k+1           (18) 

where, C1 and C2  are the acceleration constants, which 
represent the weighting of stochastic acceleration terms 
that pull each particle towards Pbest and gbest positions, 
while k represents the current iteration and rand1 and 
rand2 are two random numbers in the range [0,1].  Inertia 
weight (W) is a control parameter that is used to control 
the impact of the previous velocities on the current one.  
Hence, it influences the trade-off between the global and 
local exploration abilities of the particles. The search 
process will terminate if the number of iterations reaches 
the maximum allowable number. 

4.  FDR PSO ALGORITHM 

In the literature, it has been proved that the particle 
positions in PSO oscillate in damped sinusoidal waves 
until they converge to points in between their previous 
Pbest and gbest positions [14], [15]. During this oscillation, 
if a particle reaches a point which has better fitness than 
its previous best position, then the particle continues to 
move towards the convergence of the global best position 
discovered so far. All the particles follow the same 
behavior to converge quickly to a good local optimum. 
Suppose, if the global optimum of the problem does not 
lie on a path between original particle positions and such a 
local optimum, then the particle is prevented from 
effective search for the global value. In such cases, many 
of the particles are wasting their computational effort in 
seeking to move towards the local optimum already 
discovered. Better results may be obtained if various 
particles explore other possible search directions. 

In the FDR PSO algorithm, in addition to the Socio-
cognitive learning processes, each particle also learns 
from the experience of neighboring particles that have a 
better fitness than itself [6]. This approach results in 
change in the velocity update equation, although the 
position update equation remains unchanged.  It selects 
only one other particle at a time when updating each 
velocity dimension and that particle is chosen to satisfy 
the following two criteria. 

1. It must be near the current particle. 

2. It should have visited a position of higher fitness. 

The simplest way to select a nearby particle which 
satisfies the above mentioned two criteria is that 
maximizes the ratio of the fitness difference to the one-
dimensional distance. In other words, the dth dimension of 
the ith particle’s velocity is updated using a particle called 
the nbest , with prior best position Pj.  It is necessary to 
maximize the following Fitness Distance Ratio which is 
given by: 

idjd

ij

XP

XCostPCost

−
− )()(

          (19) 

In the FDR PSO algorithm, the particle’s velocity 
update is influenced by the following three factors: 
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Fig. 1. Flow diagram – FDR PSO algorithm. 
 
 

1. Previous best experience i.e. Pbest of the particle. 

2. Best global experience i.e. gbest , considering the 
best P best of all particles. 

3. Previous best experience of the “best nearest” 
neighbor i.e. nbest. 

Hence, the new velocity update equation becomes: 

V i d
k+1 = W*V id

k + C1*rand1*(Pid–Xid)  

+ C2*rand2*(Pgid –Xid)  

+ C3 *rand3* (Pnd - Xid)          (20) 

where, Pnd  is the nearby particle that have better fitness.  
The position update equation remains the same as in 

Equation 18. The flow diagram of the FDR PSO algorithm 
is given in Figure 1. 

K = K +1 

Initialize position X, associated velocities V, Pbest and gbest of the 
population, set k = 0.  

n best = P best 

i = 1 

d = 1 

V id = w × vid  + c1 × rand1id × (P bestid – Xid) 
+ c2 × rand2id × (g bestd – Xid) 
+ c3 × rand3id × (n bestd – Xid) 

V id
 = min (Vmaxd, max (-Vmaxd, Vid)) 

X id = Xid + Vid 

                        Cost (Pj) – Cost (Xi) 
 
                                  Pjd - Xid 

d = d +1 

P besti = Xi 

 g besti = Xi 

n best = max 

Fit (Xi) > Fit (Pbesti) 

i<PS 

K < max_gen 

i = i + 1 

Yes  

Yes  
Yes  

Yes  

No 

No 

No 

No 
NOTE 
PS – Population size 
K – generation counter from 1 to  
max_ gen 
d – dimension 
w – inertia weight 
X id

 – ith particle’s dth dimension 

START 

END 

No 

d<D 

Fit (Xi) > Fit (g besti) 
 

Yes  
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5. SIMULATION RESULTS AND DISCUSSION 

The optimum solutions for six different types of modal 
functions and a power flow problem are obtained in this 
section using swarm intelligence techniques. A 
comparative performance of the conventional PSO and 
FDR PSO methods are also illustrated. All the simulation 
studies were carried for 30 numbers of trials. They were 
carried out on P-IV, 3 GHz system in MATLAB 
environment. 

A. Benchmark problems 

The simulation parameters and constants for PSO and 
FDR PSO methods are given in Appendix I and II. The 
obtained minimum solution of the complex modal 
functions using both by PSO and FDR PSO methods is 
given in the Table 1. From this table, it is inferred that the 
results obtained by both of these methods are close with 
each other. To illustrate the convergence, the simulation 
characteristics of Rosenbrock’s function (a narrow 
solution surface) obtained through these methods is given 
in Figures 2 and 3. It is also observed that the PSO 

algorithm suits well in the initial iterations but fails later. 
The average and best fitness characteristics reveal that the 
proposed FDR PSO method is less susceptible to 
premature convergence and less likely to get into the local 
minimum of the function being optimized. Thus it 
outperforms the standard PSO. 

Table 1. Minimum solution - bench mark problems. 

Minima achieved 
Optimization Function 

PSO FDR PSO 

De Jong 0.0134 2.047e-6 

Axis parallel hyper 
ellipsoid 

3.42e-5 7.105e-12 

Rotated ellipsoid 5.846e-4 7.902e-8 

Rosenbrock 1.942e-6 1.409e-12 

Griewangk 0.4993 7.178e-11 

Sum of powers 1.337e-11 2.755e-33 

 

 

 
Fig. 2. Best and average fitness characteristics - PSO technique. 

 

 
Fig. 3. Best and average fitness characteristics – FDR PSO technique. 
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B. Power system problem 

IEEE – 30 bus power system is considered to describe the 
optimal solution obtained by swarm intelligence methods. 
It consists of six generators, 41 transmission lines, 4 tap 
changing transformers and 2 Var sources.  The base load 
of the system is 283.4 MW. The details of simulation 
parameters, population size and maximum number of 
generations which decide the execution time of the swarm 
intelligence methods are given in Appendix III.  Bus data, 
line data of the test system were taken from [9].  The 
generator real power limits and cost coefficients 
corresponding to three fuel cost functions are given in 
Tables 2 and 3.  The PSO methods were used to solve 
optimal power flow problem of this practical power 
system problem. While solving this problem, the solution 
must satisfy the transmission and generator constraints. 
The equality and inequality constraints are described in 
the problem formulation section. In the proposed FDR 
PSO algorithm, the dimension of the particles is taken as 
six and a linearly decreasing inertia weight (w) from 0.9 to 
0.2 is used to obtain the convergence characteristics [16]. 

Three different fuel cost objective functions were 
considered while solving the optimal power flow problem 
using the swarm techniques. One is quadratic, another one 

posses sine function and the later is piecewise in nature. 
The structure of these non-smooth functions is given in 
the II section of this paper. The optimal solution obtained 
through PSO and FDR PSO methods and their 
corresponding minimum costs are given in Table 4. The 
results of these techniques are also compared with other 
optimization technique called as Evolutionary 
Programming (EP), to prove its validity. In addition to the 
minimum cost of generation, settings of the generators and 
the corresponding convergence characteristics of the 
techniques are also obtained for all the three functions 
which are given in Figures 4 and 5 respectively.  From the 
Figure 5, it is observed that after the considerable number 
of generations, the solution of the algorithm becomes 
constant that ensures the algorithm’s convergence. Power 
system losses are determined through the power flow 
solution.  It is obtained through Newton Raphson method. 
The losses obtained for the three fuel cost functions were 
7.358 MW, 7.627 MW and 8.218 MW respectively.  The 
computation time for the PSO and FDR PSO were found 
to be 2.313 sec and 4.344 sec respectively in P IV, 3 GHz 
system. 

 
Table 2. Generator data and cost coefficients. 

Quadratic Valve point loading 
Gen 
No. 

Pmax 

(MW) 
Pmin 

(MW) a 
($/hr) 

b 
($/MWhr) 

c 
($/MW2hr) 

a 
($/hr) 

b 
($/MWhr) 

c 
($/MW2hr) 

d 
($/hr) 

e 
(rad/MW) 

1 50 200 0.00 2.00 0.00375 150.0 2.0 0.0016 50.0 0.063 
2 20 80 0.00 1.75 0.01750 25.0 2.5 0.0100 40.0 0.0980 
3 15 50 0.00 1.00 0.006250 0.00 1.00 0.006250 0.0 0.0 
4 10 35 0.00 3.25 0.00834 0.00 3.25 0.00834 0.0 0.0 
5 10 30 0.00 3.00 0.02500 0.00 3.00 0.02500 0.0 0.0 
6 12 40 0.00 3.00 0.02500 0.00 3.00 0.02500 0.0 0.0 

 
Table 3. Generator cost coefficients for multiple fuel cost function. 

Gen 
No. 

Pmin 
(MW) 

Pmax 

(MW) 
a 

($/hr) 
b 

($/MWhr) 
c 

($/MW2hr) 
50 140 55.0 0.70 0.0050 1 
140 200 82.5 1.05 0.0075 
20 55 40.0 0.30 0.0100 2 
55 80 80.0 0.60 0.0200 
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Fig. 4. Optimal generator settings obtained by FDR PSO technique. 
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Fig. 5. Convergence characteristics for various fuel cost functions. 

 
6. CONCLUSION 

The effectiveness of the convergence and minimum 
solution of the proposed FDR PSO algorithm are validated 
using standard benchmark and power system problems. 
The solution capability of the proposed algorithm is 
demonstrated on the above functions which are non-linear, 
non-convex and non-smooth in nature. The 
implementation of this algorithm is also simple by 
computing and maximizing the ratio of fitness difference 
to one dimensional distance. Avoiding premature 
convergence, the proposed algorithm allows to be 
continuing in the search space for the global optima. The 
convergence of the proposed algorithm is less sensible 
with the nature of objective function. 
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APPENDIX 

 
Appendix I: Population sizes and problem dimensionality in various experiments for PSO and FDR PSO. 

Function Population size Generations Dimensions 
De Jong’s 10 1000 20 

Axis Parallel hyper-ellipsoid 10 1000 10 

Sum of Powers 10 1000 10 

Rotated hyper-ellipsoid 10 1000 10 

Rosenbrock’s 10 1000 2 

Griewangk’s 10 1000 10 
 
 
 

Appendix II: Simulation parameters used in PSO and FDR PSO. 

Parameters / Algorithm C1 C2 C3 

PSO 1.0 1.0 --- 

FDR PSO 1.0 1.0 2.0 
 
 
 

Appendix III: Simulation parameters of PSO and FDR PSO methods. 
Parameters/ 
Algorithm 

C1 C2 C3 Population size Maximum number of generations 

PSO 1.0 1.0 --- 20 750 
FDR PSO 1.0 1.0 2.0 20 750 

 
 
 
 


