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Abstract – Off-grid solar systems encounter difficulties during low solar irradiance periods, particularly at night 

when photovoltaic generation stops. This study evaluates and compares the performance of five machine learning 

models Logistic Regression, Random Forest, Gradient Boosting, Support Vector Machine (RBF), and Decision Tree 

for prioritizing load cut-offs in AI to maintain critical loads during energy shortages. Data averaged hourly from an 

off-grid solar setup in Chiang Mai, Thailand, for 2024, included photovoltaic output, battery metrics, and 

categorized load usage during rainy, winter, and summer seasons. Models were trained on rainy season data and 

tested on winter, summer, and October datasets. We evaluated performance through MAE, RMSE, R², classification 

reports, F1-scores, and k-fold cross-validation to ensure stability. Results indicate that Random Forest and Gradient 

Boosting consistently reached the highest accuracy (R² > 0.95 in most seasons) with low MAE and RMSE, whereas 

Decision Tree and Logistic Regression showed more variability. AI-driven scenarios greatly improved nighttime 

battery performance over non-AI approaches, especially during the rainy season. This method enhances energy 

reliability and battery longevity in off-grid settings, but outcomes vary by location. Future research should explore a 

wider range of climates and load profiles. 

  

Keywords – AI-based load management, battery discharge prediction, energy prioritization, load prioritization, off-grid solar 

systems. 
 

 
11. INTRODUCTION 

Off-grid solar energy systems struggle to provide 

consistent power, especially at night when solar 

generation stops. During prolonged low solar irradiance, 

like the rainy season, battery reserves may fall short of 

supporting all connected loads. Without proper 

management, these issues can cause early battery to 

drain or total system failure, interrupting vital services 

and diminishing system reliability. 

Recently, smart energy management methods have 

developed to tackle these issues, integrating real-time 

monitoring, predictive analytics, and adaptive control. 

Machine learning methods have proven effective in 

predicting energy availability and optimizing load 

prioritization according to battery status and 

consumption needs. Earlier research in microgrid and 

off-grid settings has shown that AI-driven control can 

minimize energy waste, increase operational hours, and 

improve resilience in changing weather conditions. 

This research aims to create and assess an AI-

based framework for prioritizing load cut-offs in off-

grid solar systems, ensuring that essential loads stay 
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operational at night by dynamically restricting non-

essential usage. 

The approach included gathering detailed hourly 

operational data from an off-grid solar setup in Chiang 

Mai, Thailand, covering photovoltaic output, battery 

condition, and categorized energy use. Various machine 

learning models were developed to forecast battery 

discharge time, and simulations were performed to 

evaluate system performance with AI-managed versus 

non-AI-managed load control strategies. Model 

accuracy was evaluated using MAE, RMSE, and R². 

The findings show that the AI approach enhances 

system stability, increases nighttime energy availability, 

and lessens battery stress. This framework provides a 

scalable, affordable solution for energy-limited off-grid 

applications, showing great promise for use in rural and 

remote areas where reliability is essential for economic 

and social sustainability. 

2.  LITERATURE REVIEW  

An extensive review of peer-reviewed literature was 

conducted to explore methods for enhancing energy 

reliability in off-grid systems, especially during 

nighttime when solar input is low or absent. Recent 

studies concentrated on AI-assisted energy forecasting, 

smart microgrid optimization, and energy prioritization 

strategies in low-resource settings. Sources included 

IEEE, Elsevier, and other indexed publications, 

concentrating on real-time energy management in off-

grid or remote environments. 

Only sources providing experimental validation or 

simulation-based analysis of AI techniques in power 

control were included. Literature showcasing machine 

learning (ML) models, energy management controllers, 
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and predictive battery usage was prioritized. Selected 

contributions from Mohamed et al. [7], Sankarananth et 

al. [16], and Lissa et al. [17] were noted for their 

technical rigor and relevance in AI deployment within 

embedded or edge systems for intelligent load control. 

The focus in the literature is using AI for load 

forecasting, classification, and managing energy storage 

to facilitate dynamic power allocation in limited off-grid 

systems. There is agreement on the effectiveness of ML 

models such as ANN, LSTM, and hybrid CNN-LSTM 

[7], [8], but discussions continue regarding the trade-off 

between model complexity and deploy ability in low-

compute settings [20], [21]. A significant gap is the 

incorporation of AI-driven load shedding in systems 

facing limited connectivity and real-time processing 

limitations. Additionally, cybersecurity issues and 

model transparency (XAI) are still not thoroughly 

examined in off-grid environments. This method ensures 

system stability and prevents blackouts, keeping 

essential services running [1]. 

This review focuses on five key themes: (1) AI in 

load forecasting, (2) load classification and 

prioritization, (3) optimization of demand response, (4) 

management of energy storage and discharge, and (5) 

detection of anomalies in energy usage. Each area is 

examined via essential methodologies, practical uses, 

and the challenges faced. Limited Renewable 

Generation Solar PV systems, a common component of 

off-grid setups, do not generate electricity at night, 

reducing the available energy supply [2]. The review 

wraps up by synthesizing emerging trends and future 

research directions essential for advancing intelligent 

off-grid energy systems. 

1. AI for Load Forecasting in Off-Grid Systems 

Accurate load forecasting is essential for ensuring 

energy reliability at night. AI algorithms can predict 

energy demand by analysing historical consumption, 

weather conditions, and occupancy patterns [4]. 

Artificial Neural Networks (ANNs) [7] are commonly 

used for their capacity to learn complex nonlinear 

relationships. LSTM networks excel at capturing time-

dependent usage trends [7], and hybrid models like 

CNN-LSTM enhance accuracy by integrating spatial 

and temporal feature learning [8]. 

2. Models for Load Classification and Prioritization 

In constrained environments, energy efficiency relies on 

smart identification of load priorities. Rule-based 

systems provide clear-cut classification, yet machine 

learning techniques like decision trees and support 

vector machines are gaining traction for their ability to 

adapt to consumption patterns [6]. These models 

categorize and prioritize loads, allowing for immediate 

decisions to maintain power for critical services such as 

communication or medical devices in battery-

constrained situations [4]. 

 

 

3. AI-Driven Demand Response Optimization 

AI improves demand response (DR) strategies by 

analysing consumer profiles and adjusting or reducing 

demand accordingly. Methods like real-time dynamic 

pricing [9], [15], incentive-based programs [5], and 

direct load control [10] enable smart interaction with 

users or devices to reduce peak demand. These methods 

are especially important in off-grid microgrids, where 

sudden load spikes can quickly drain storage systems. 

4. Control of Battery Energy Storage Systems (BESS) 

Optimizing battery use is essential for nighttime load 

support. Predictive AI models anticipate energy 

generation and demand, allowing for proactive charging 

during daylight and strategic discharging at night [3]. 

SoC optimization models, using historical data, ensure 

battery operation stays within safe limits, preventing 

overcharge and deep discharge that can harm battery life 

[11]. AI manages the interplay between batteries and 

supercapacitors in hybrid storage systems to enhance 

energy delivery efficiency [12]. 

5. Anomaly Detection and Reducing Energy Waste 

Energy use anomalies, often stemming from faulty 

devices or changes in behaviour, threaten energy 

reliability. Clustering algorithms like k-means identify 

outliers in load patterns [14], whereas autoencoder 

neural networks highlight deviations by reconstructing 

anticipated data from learned baselines [7]. ARIMA 

models for time-series forecasting help identify 

unexpected behaviour [8], which supports preventive 

maintenance and minimizes waste in energy-constrained 

systems [13]. 

6. AI-Driven Implementation Framework 

Implementing AI-based cutoff load strategies 

successfully requires several stages: data collection [8], 

load classification [6], model training [7], system 

integration [6], and field validation [12]. Ongoing 

monitoring allows the model to adjust to changing 

patterns, and retraining with new datasets enhances 

performance progressively. Testing through simulation, 

along with staged deployment, ensures validation of 

robustness across different load conditions. 

7. Evidence from Case Studies and Impact on Systems 

Mohamed et al. [7] showcased a practical use of AI in 

forecasting and optimizing a hydrogen-powered 

microgrid, resulting in enhanced load matching and 

system reliability. Sankarananth et al. [16] utilized 

metaheuristic-AI models in smart grids for efficient 

power scheduling at reduced costs. Lissa et al. [17] 

demonstrated that deep reinforcement learning can 

enhance home energy systems by synchronizing PV 

output with indoor environmental control. These cases 

demonstrate AI's significant impact on energy 

distribution logic and priority management. 
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8. Measurable Advantages of AI Integration 

Numerous studies indicate substantial improvements in 

system performance through AI-driven cutoff strategies. 

Improvements in efficiency arise from enhanced load-

supply matching [18], and battery lifespan is prolonged 

via smart charging and discharging cycles [11]. AI 

improves occupant comfort by maintaining essential 

services during power limitations [17] and facilitates 

better integration of renewable energy sources [12]. AI 

can prevent blackouts and ensure a reliable power 

supply [19]. 

9. Challenges of Implementation in Off-Grid Settings 

AI has great potential for off-grid energy management, 

but challenges remain. In numerous off-grid areas, data 

collection systems are lacking, and hardware limitations 

restrict the use of advanced AI models. A lack of local 

expertise in AI system development and maintenance 

creates additional challenges. Security is a major 

concern, as shown in [22], where risks like data 

tampering or unauthorized load manipulation in control 

systems require secure architectures and defence 

strategies to protect AI-enabled IoT deployments. 

10. Directions for Future Research and Technology 

New studies aim to enhance the accessibility and 

practicality of AI for remote applications. Edge 

computing allows models to operate locally, reducing 

reliance on cloud infrastructure [23]. Federated learning 

enables training without the need to transfer sensitive 

data [20], and explainable AI enhances trust and 

transparency in automated decision-making [21]. 

Reinforcement learning is increasingly recognized for its 

ability to adapt to real-time conditions and optimize 

continuously [16]. 

AI-driven load prioritization represents a 

significant improvement for off-grid energy systems, 

especially in boosting nighttime reliability when storage 

is limited. Literature indicates that improvements in 

forecasting, load classification, demand response, and 

storage optimization greatly enhance system resilience. 

Despite ongoing implementation challenges, particularly 

in resource-limited regions, research indicates a clear 

trend towards wider adoption of intelligent energy 

management solutions. Advancements in lightweight, 

explainable, and secure AI models will enhance 

sustainable energy autonomy for underserved 

communities. 

3. METHODOLOGY 

This research adopts a data-driven approach to optimize 

nighttime energy management in off-grid solar systems 

using AI-based load prioritization. The methodology 

integrates real-world energy data with predictive 

modeling to simulate battery performance under 

different load control strategies. 

3.1 Research Design 

The study employs a comparative experimental design 

that simulates two operational scenarios: one with 

traditional fixed load control, and the other using AI-

driven dynamic prioritization. Load categories are 

segmented into three tiers based on criticality Internet 

and networking (1st), lighting (2nd), and USB/CCTV 

devices (3rd) to support intelligent shedding during low 

power availability. 

The system architecture developed for this study 

is illustrated in Figure 1. The setup consists of an off-

grid photovoltaic energy system equipped with a solar 

cell array connected to a charger controller. Energy 

harvested during the day is regulated by the controller 

and stored in a 13.2V LiFePO₄ battery. This stored 

energy is then distributed to prioritized loads during 

nighttime operation. Loads are divided into three 

categories based on criticality: communication devices 

(highest priority), lighting (medium priority), and USB 

charging/CCTV systems (lowest priority). Each load 

category is connected through a switching mechanism 

that enables selective disconnection based on battery 

status and AI-driven prediction outcomes. 

 

Fig. 1. System diagram of the off-grid solar energy 

architecture with AI-based load prioritization. 

 

An IoT gateway continuously monitors system 

parameters, including photovoltaic output, battery 

voltage/current, and individual load consumption. This 

gateway is linked to a cloud-connected database and 

visualization dashboard for real-time data logging and 

offline model training. Load status and priority control 

logic are applied using a decision model embedded 

within the gateway or edge device. 

This design supports dynamic load management 

where essential services are maintained as long as 

possible under energy-constrained conditions. It enables 

real-time prioritization decisions based on historical 

usage trends and forecasted energy availability, central 

to the experimental simulation and evaluation conducted 

in this research. 

3.2 Data Collection 

Measurements of the energy system were taken every 5 

minutes in 2024 from a solar installation off the grid in 

Chiang Mai, Thailand. The monitoring system recorded 

PV array input, battery parameters (voltage, current, 

power), and load power consumption categorized by 

priority tiers. The dataset included more than 105,000 

records, averaged to hourly values for seasonal and 
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model analysis. 

The data was divided into three operational seasons 

for experiments based on regional climate: Rainy (May–

October), Winter (November–February), and Summer 

(March–April). This enabled focused training and 

assessment of predictive models across different solar 

irradiance and load scenarios. 

Data preprocessing fixed gaps and anomalies for 

reliable analysis. Short-term communication 

interruptions (≤ 2 hours) had missing values filled 

through linear interpolation, and transient sensor noise 

along with outliers were addressed using a rolling 

average filter (window size = 3). The steps maintained 

the temporal features of the signals, allowing the dataset 

to function as a reliable and representative input for 

evaluations of both AI and non-AI control strategies. 

3.3 Data Analysis 

Five machine learning models were used in the 

predictive evaluation: Logistic Regression, Random 

Forest, Gradient Boosting, Support Vector Machine, and 

Decision Tree. Models were trained to estimate battery 

discharge profiles and forecast nighttime support 

duration using hourly PV generation, battery state, and 

load demand across priority tiers. 

Model development used a seasonal partitioning 

method. Data from the rainy season (May–October) was 

utilized for training, while the winter (November–

February) and summer (March–April) seasons acted as 

independent test sets to assess generalization across 

varying solar resource conditions. To enhance 

robustness, October was separated from the Rainy 

season and utilized as a held-out intra-season test set. 

K-fold cross-validation was used on the Rainy 

season training data to evaluate model stability and 

estimate performance variance across various folds. 

Two operational strategies were compared in the 

simulation. 

3.3.1. AI-driven load prioritization disconnects 

lower-priority loads when energy reserves 

are predicted to be insufficient. 

3.3.2. The non-AI baseline keeps all loads active 

until the battery hits its critical threshold. 

Performance was measured with Mean Absolute 

Error (MAE), Root Mean Square Error (RMSE), and the 

coefficient of determination (R²). Daily support hours 

exceeding 24 Ah (20% of nominal capacity) were 

calculated to evaluate system resilience, indicating the 

capacity to maintain essential loads in low-solar 

conditions. To quantitatively assess the performance of 

the predictive model used in this study, we define a set 

of standard regression evaluation metrics commonly 

applied in battery discharge prediction and time-series 

modeling: Mean Absolute Error (MAE), Root Mean 

Square Error (RMSE), and the Coefficient of 

Determination (R² score). These metrics compare the 

predicted battery values against observed data, allowing 

for direct evaluation of model effectiveness in 

simulating energy availability under varying load 

scenarios. 

Let: 

• iy denote the observed (actual) battery state of 

charge (in Ah) at time, i 

• ˆ
iy be the predicted battery state from the model at 

the same time step, 

• iy be the mean of all observed values over the 

dataset, 

• n represent the total number of observations. 

The Mean Absolute Error (MAE) is defined as: 

1
ˆMAE

1
n= y - y
i = i in

     (1) 

This metric reflects the average absolute deviation 

between the predicted and actual battery values, offering 

a straightforward interpretation of prediction accuracy in 

the same unit as the variable (Ah). 

The Root Mean Square Error (RMSE) provides a 

measure that penalizes larger errors more significantly: 

   ( )
2

1

1
ˆRSME

n

i ii
y y

n =
= −    (2) 

This is especially useful in off-grid energy systems 

where large prediction errors can result in failure to 

maintain critical loads, thus RMSE helps identify worst-

case deviations. 

The Coefficient of Determination (R²) evaluates 

the proportion of variance in the observed data that is 

predictable from the model: 

   ( )
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A value close to 1.0 indicates that the model 

explains most of the variability in the battery state over 

time, demonstrating reliable forecast performance. 

In this study, these metrics are computed daily and 

aggregated to assess both short-term prediction stability 

and long-term model consistency over the rainy season 

dataset. These results provide evidence of the model’s 

effectiveness in supporting real-time load control 

decisions and validate its suitability for integration into 

energy-limited IoT-based solar systems. 

We used Random Forest Regression as it 

effectively captures non-linear relationships and reduces 

overfitting. Grid search tuned key hyperparameters: 

number of estimators (n=100–500), maximum depth (3–

10), and minimum samples per leaf. A 5-fold cross-

validation method guaranteed generalisation. Linear 

Regression and Support Vector Regression (SVR) were 

assessed for baseline comparison. Random Forest 

consistently surpassed the alternatives in MAE and 

RMSE throughout the entire dataset. 

3.4 Data Validity and Reliability 

We verified the predictive performance of each machine 

learning model through season-specific and overall error 

analysis on the complete dataset. We calculated 
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accuracy metrics like R², MAE, and RMSE for both 

training and test sets to verify model generalization. 

Seasonal k-fold cross-validation evaluated result 

consistency across different data subsets, ensuring 

statistical reliability. Simulated outputs were compared 

with actual system load thresholds to confirm 

operational reliability in real-world conditions. Daily 

performance tracking of the Rainy, Winter, and Summer 

datasets showed consistent model behavior over time, 

with little variation in prediction accuracy. This layered 

validation method guarantees the reliability and 

reproducibility of the suggested AI-driven load 

prioritization framework in actual off-grid solar energy 

settings. 

3.5 Research Limitations 

This work utilized data covering all three seasonal 

conditions however, the analysis was performed entirely 

in a simulation environment without deployment to 

physical hardware. As such, real-time performance 

under embedded controller constraints and varying field 

conditions has not yet been verified. Future studies will 

focus on edge-based implementation and adaptive 

control strategies to validate operational reliability in 

live off-grid solar systems. 

4. RESULT AND DISCUSSION 

Figure 2 shows the battery charge level (in Ah) recorded 

during the rainy season in an off-grid solar energy 

system lacking AI-based load prioritization. The dashed 

horizontal line indicates the critical battery threshold of 

24 Ah (20% of total capacity), below which essential 

loads may be interrupted. The trend shows several 

instances where the battery fell below the safety 

threshold, especially during overcast or low irradiance 

days. Mid-season, battery level fluctuations are more 

noticeable, showing a greater mismatch between energy 

generation and load demand. Without intelligent load 

shedding, discharge speeds up, operational runtime 

decreases, and critical loads risk losing service. These 

findings highlight the need for predictive load 

management techniques like AI-based prioritization to 

ensure system stability and safeguard energy availability 

in challenging environmental conditions. 

 

 

Fig. 2. Daily battery level profile without AI load control 

during Rainy season. 
 

Figure 3 shows the hourly distribution of power 

consumption for prioritized electrical loads during the 

rainy season. The stacked area chart divides total load 

into three categories: communication devices (Internet 

& Network), lighting systems, and auxiliary loads 

(CCTV and USB charging). These categories align with 

first-, second-, and third-priority load classes. The 

visualization shows steady baseline usage from high-

priority communication devices, whereas lighting and 

auxiliary loads display greater fluctuations, especially in 

the early evening and nighttime. The third-priority 

group, CCTV and USB, exhibits the most variability and 

highest peak values, posing a challenge for energy-

constrained battery systems. The stacked load profile 

highlights the need for tiered load management, as the 

total demand during low photovoltaic generation can 

surpass the system's storage capacity. This figure's 

analysis supports AI-driven load shedding strategies that 

extend battery life by temporarily reducing lower-

priority loads when storage falls below set thresholds. 

 

 

Fig. 3. Stacked power usage by priority load category 

during the Rainy season. 

 

Table 1 shows the predictive performance of 

GradBoost, Decision Tree, Random Forest, LogReg, and 

SVM-RBF, trained on rainy-season data and evaluated 

on the Rainy, Summer, and Winter seasonal subsets. 

Model accuracy and macro-averaged F1-score 

(F1_macro) are presented to reflect classification 

precision and recall across load cut-off priority classes. 

Throughout all seasons, GradBoost and Decision Tree 

recorded the highest F1_macro scores in the Rainy 

season, demonstrating effective class balance 

management in the training domain. Most models-

maintained accuracy values above 0.96 across all test 

scenarios, but the F1_macro metric shows significant 

variation, especially in the Winter season due to class 

imbalance affecting classification robustness. Models 

like Random Forest and GradBoost showed high 

accuracy in both Summer and Rainy conditions, 

indicating good generalization to varying photovoltaic 

generation profiles. The perfect accuracy in summer for 

all models except Decision Tree shows high solar 

availability and less variability in load cut-off events 

during this time. 

The results show that while accuracy indicates 

nearly perfect performance, F1_macro reveals important 

insights into seasonal class distribution effects, 

especially in Winter, where low irradiance results in 

fewer cut-off events and potential bias towards majority 

classes. 

Figure 4 shows a comparison of five machine 

learning models: Gradient Boosting, Decision Tree, 

Random Forest, Logistic Regression, and Support 

Vector Machine with RBF kernel, assessed using 
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seasonal datasets for Rainy, Summer, and Winter 

conditions. Every data point represents the model's 

performance for a particular season, with Accuracy on 

the horizontal axis and the macro-averaged F1-score on 

the vertical axis. 

 
Table 1. Performance comparison of 5 machine learning 

models for battery discharge prediction. 

Model Season Accuracy F1_macro 

GradBoost Rainy 0.992527 0.91212 

DecisionTree Rainy 0.990036 0.831887 

RandomForest Rainy 0.98981 0.788192 

LogReg Rainy 0.980978 0.376105 

SVM-RBF Rainy 0.979846 0.32994 

LogReg Summer 1 1 

RandomForest Summer 1 1 

SVM-RBF Summer 1 1 

DecisionTree Summer 1 1 

GradBoost Summer 0.999308 0.499827 

DecisionTree Winter 0.964113 0.418604 

GradBoost Winter 0.965148 0.349394 

LogReg Winter 0.967219 0.327779 

RandomForest Winter 0.967219 0.327779 

SVM-RBF Winter 0.967219 0.327779 

 

Fig. 4. Accuracy vs. F1-Score comparison across seasons. 

 

The plot shows that models like Gradient Boosting, 

Decision Tree, and Random Forest consistently reach 

high accuracy and competitive F1-scores during the 

Rainy season, where the variability in solar generation 

creates tougher prediction challenges. Summer results 

show consistently high accuracy across all models, with 

slight variations in F1-scores, indicating stable solar 

availability. Winter season performance shows lower 

F1-scores across all models, with Decision Tree and 

Gradient Boosting demonstrating slightly better 

resilience. 

The results show that accuracy stays high 

throughout the seasons, but the F1-score provides a 

better understanding of model strength during seasonal 

changes, especially in difficult or unbalanced prediction 

situations in off-grid solar energy management. 

Figure 5 shows the predictive accuracy of five 

regression models during rainy, summer, and winter 

seasons using MAE, RMSE, and R² metrics. Random 

Forest Regression shows the lowest error values and 

highest R² scores across all seasons, highlighting its 

strong generalization and adaptability to seasonal 

changes. Decision Tree Regression achieves competitive 

accuracy, especially during rainy and summer periods, 

but exhibits higher error variance in winter. Gradient 

Boosting shows decent performance, performing well in 

summer but displaying increased MAE and RMSE in 

rainy and winter conditions. Linear Regression and SVR 

show the poorest performance, with higher error rates 

and lower R² values, indicating their limited ability to 

model the dataset's nonlinear relationships. These 

findings emphasize the benefits of using ensemble 

methods for predicting energy in off-grid solar systems 

during seasonal changes. 

 

 

Fig. 5. Model performance comparison across seasons. 
 

Figure 6 shows the stability evaluation of five 

classification models during rainy season conditions 

with 5-fold cross-validation. Random Forest, Gradient 

Boosting, SVM-RBF, and Decision Tree show high 

median accuracy and tight interquartile ranges, 

reflecting strong performance and minimal sensitivity to 

changes in training data. Logistic Regression shows 

significant accuracy variation and a lower median, 

underscoring its shortcomings in capturing the nonlinear 

and complex patterns typical of energy consumption and 

generation data this season. These results indicate that 

ensemble and kernel-based approaches provide better 

stability in ensuring prediction accuracy amid changing 

weather and energy supply conditions. 

 

 

Fig. 6. Rainy season model stability (5-fold CV). 

 

Figure 7 shows the accuracy distribution for five 

machine learning models Logistic Regression, Random 

Forest, Gradient Boosting, SVM-RBF, and Decision 

Tree, assessed with 5-fold cross-validation in the winter 

season. All models show narrow interquartile ranges, 

reflecting consistent performance across folds. The 

median accuracy for most models is about 0.92, with 

Random Forest and SVM-RBF displaying slightly 
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higher upper limits, indicating a bit better best-case 

performance.  

 

 

Fig. 7. Winter season model stability (5-fold CV). 

 

Gradient Boosting and Decision Tree show similar 

averages but with wider ranges, whereas Logistic 

Regression has competitive accuracy but more 

variability in results. These findings show that in winter, 

when solar energy is less available, models perform 

consistently with little variation, demonstrating their 

reliability in challenging energy conditions. 

Figure 8 shows the stability of five machine 

learning models through cross-validation in the summer 

season. Compared to the results in Table 1, all models 

show perfect or near-perfect accuracy, with most 

achieving an accuracy of 1.0 and a high F1-macro score 

for this season. The lack of variance in the cross-

validation plot matches these metrics, showing that the 

models predicted load cut-off priorities accurately in the 

summer dataset. 

 

 

Fig. 8. Summer season model stability (5-fold CV). 

 

Figure 9 shows the cross-validation stability of five 

machine learning models, comparing their accuracy 

across rainy, winter, and summer seasons. Accuracy 

values are presented as mean ± standard deviation for 

each season, offering insight into predictive 

performance and consistency. Results show that model 

stability changes greatly with the seasons. During 

summer, all models reached perfect accuracy with 

minimal variance, showing a highly predictable 

environment thanks to steady solar energy supply. 

Winter results stayed strong across all models, but 

showed a bit more variability, indicating moderate 

changes in solar generation. The rainy season showed 

significant differences, with models like Random Forest, 

Gradient Boosting, and SVM-RBF remaining stable, 

whereas Logistic Regression had lower mean accuracy 

and the highest variance. These findings indicate that 

some models maintain high performance despite 

seasonal changes, but the rainy season brings increased 

uncertainty, likely from variable solar irradiance and 

greater battery resource demands. 

 

 

Fig. 9. Cross-validation stability of model accuracy across 

seasons. 

 

The experimental results show that model 

performance in optimizing load cut-off priority varies by 

season, with environmental conditions affecting 

predictive stability and accuracy. During summer, all 

models reached perfect or nearly perfect accuracy with 

minimal variance, showing a stable prediction 

environment thanks to consistent solar generation and 

fewer fluctuations in battery discharge patterns. Winter 

performance was solid for most models, though some 

variability was noted due to occasional drops in PV 

input. The rainy season presented significant challenges, 

leading to notable accuracy declines and increased 

variance, especially for Logistic Regression. This 

indicates that simpler linear models have difficulty in 

conditions of frequent low irradiance and irregular load 

demands. 

The results support the initial hypothesis that AI-

based optimization can enhance battery life, particularly 

in variable energy conditions. Ensemble methods [24] 

like Random Forest and Gradient Boosting consistently 

surpassed other models throughout all seasons, ensuring 

greater stability and predictive accuracy. This highlights 

the gap in the literature, showing that there has been 

little exploration of optimization strategies for off-grid 

energy systems tailored to specific seasons. Seasonal 

differences emphasize the need for context-aware 

control strategies, indicating that static cut-off 

thresholds might be less effective than adaptive, AI-

driven approaches. 

These findings enhance the theoretical framework 

by demonstrating that ensemble learning models offer a 

stronger solution for energy management in fluctuating 

solar conditions, thereby improving nighttime load 

support. The findings create avenues for future research, 

like combining hybrid ensemble techniques with real-

time sensor input to enhance adaptability. This method 

could allow for flexible, season-sensitive cut-off 

strategies that enhance energy availability and extend 

battery life. The methodology can also extend to other 

renewable-powered microgrids, paving the way for 

more resilient and efficient energy management 

solutions. 

 

 

http://www.rericjournal.ait.ac.th/


Tipauksorn P., Luekhong P., and Yingkayun K. / International Energy Journal 25 (2025) Special Issue 3A (501 – 510) 

©2025. Published by RERIC in International Energy Journal (IEJ), selection and/or peer-reviewed under the responsibility of the Organizers of the “17th International 

Conference on Science, Technology and Innovation for Sustainable Well-Being (STISWB 2025)” and the Guest Editor: Prof. Pradit Terdtoon of Chiang Mai 

University, Chiang Mai, Thailand. 

www.rericjournal.ait.ac.th 

508 

5. CONCLUSION 

This research analyzed AI-driven load cut-off 

prioritization for an off-grid solar energy system in 

Chiang Mai, Thailand, through a comparative 

assessment of five predictive models. The results show 

that seasonal factors significantly impact model 

performance, with the optimized model consistently 

providing better predictive accuracy, stability, and 

reliability in forecasting battery support time. These 

findings enhance the field by demonstrating that season-

aware predictive modeling can greatly optimize energy 

management for off-grid systems, minimizing the risk of 

early battery depletion and prolonging nighttime 

availability. 

These results are important for sustainable energy 

management. Optimizing load allocation allows critical 

services to run smoothly without the need for expensive 

hardware upgrades. AI-driven prioritization frameworks 

can extend beyond rural electrification to other critical 

areas, like maintaining uptime for telecom cell sites, 

supporting vital medical equipment, or ensuring 

continuous operation in industrial facilities. This 

broadens the use of AI load optimization from 

residential off-grid systems to essential infrastructures. 

The research has certain constraints. The dataset 

was limited to one site and one year of seasonal data, 

potentially missing variability over longer periods or 

different geographic areas. The results show strong 

evidence from simulation, but real-world deployment on 

embedded hardware hasn't been tested yet, raising 

concerns about latency and energy consumption in 

practice. 

Future enhancements should involve testing across 

diverse datasets over multiple years and sites to improve 

generalizability, along with implementing optimized 

models on embedded controllers for real-time 

assessment. Implementing adaptive control mechanisms 

can enhance resilience in fast-changing environments. 

The findings advocate for integrating AI-driven energy 

management systems into rural electrification and 

renewable microgrid policies, promoting stable and 

dependable power access. These methods enhance 

energy efficiency, extend battery life, and minimize 

disruptions in residential and industrial off-grid settings. 
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