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Abstract — Off-grid solar systems encounter difficulties during low solar irradiance periods, particularly at night
when photovoltaic generation stops. This study evaluates and compares the performance of five machine learning
models Logistic Regression, Random Forest, Gradient Boosting, Support Vector Machine (RBF), and Decision Tree
for prioritizing load cut-offs in Al to maintain critical loads during energy shortages. Data averaged hourly from an
off-grid solar setup in Chiang Mai, Thailand, for 2024, included photovoltaic output, battery metrics, and
categorized load usage during rainy, winter, and summer seasons. Models were trained on rainy season data and
tested on winter, summer, and October datasets. We evaluated performance through MAE, RMSE, R? classification
reports, Fl-scores, and k-fold cross-validation to ensure stability. Results indicate that Random Forest and Gradient
Boosting consistently reached the highest accuracy (R? > 0.95 in most seasons) with low MAE and RMSE, whereas
Decision Tree and Logistic Regression showed more variability. Al-driven scenarios greatly improved nighttime
battery performance over non-AI approaches, especially during the rainy season. This method enhances energy
reliability and battery longevity in off-grid settings, but outcomes vary by location. Future research should explore a
wider range of climates and load profiles.

Keywords — Al-based load management, battery discharge prediction, energy prioritization, load prioritization, off-grid solar
systems.

1. INTRODUCTION operational at night by dynamically restricting non-
essential usage.

The approach included gathering detailed hourly
operational data from an off-grid solar setup in Chiang
Mai, Thailand, covering photovoltaic output, battery
condition, and categorized energy use. Various machine
learning models were developed to forecast battery
discharge time, and simulations were performed to
evaluate system performance with Al-managed versus
non-Al-managed load control strategies. Model
accuracy was evaluated using MAE, RMSE, and R2.

The findings show that the Al approach enhances
system stability, increases nighttime energy availability,
and lessens battery stress. This framework provides a
scalable, affordable solution for energy-limited off-grid
applications, showing great promise for use in rural and
remote areas where reliability is essential for economic
and social sustainability.

Off-grid solar energy systems struggle to provide
consistent power, especially at night when solar
generation stops. During prolonged low solar irradiance,
like the rainy season, battery reserves may fall short of
supporting all connected loads. Without proper
management, these issues can cause early battery to
drain or total system failure, interrupting vital services
and diminishing system reliability.

Recently, smart energy management methods have
developed to tackle these issues, integrating real-time
monitoring, predictive analytics, and adaptive control.
Machine learning methods have proven effective in
predicting energy availability and optimizing load
prioritization according to battery status and
consumption needs. Earlier research in microgrid and
off-grid settings has shown that Al-driven control can
minimize energy waste, increase operational hours, and
improve resilience in changing weather conditions.

This research aims to create and assess an Al- 2. LITERATURE REVIEW

based framework for prioritizing load cut-offs in off-
grid solar systems, ensuring that essential loads stay
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An extensive review of peer-reviewed literature was
conducted to explore methods for enhancing energy
reliability in off-grid systems, especially during
nighttime when solar input is low or absent. Recent
studies concentrated on Al-assisted energy forecasting,
smart microgrid optimization, and energy prioritization
strategies in low-resource settings. Sources included
IEEE, Elsevier, and other indexed publications,
concentrating on real-time energy management in off-
grid or remote environments.

Only sources providing experimental validation or
simulation-based analysis of Al techniques in power
control were included. Literature showcasing machine
learning (ML) models, energy management controllers,
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and predictive battery usage was prioritized. Selected
contributions from Mohamed et al. [7], Sankarananth et
al. [16], and Lissa et al. [17] were noted for their
technical rigor and relevance in Al deployment within
embedded or edge systems for intelligent load control.

The focus in the literature is using Al for load
forecasting, classification, and managing energy storage
to facilitate dynamic power allocation in limited off-grid
systems. There is agreement on the effectiveness of ML
models such as ANN, LSTM, and hybrid CNN-LSTM
[7], [8], but discussions continue regarding the trade-off
between model complexity and deploy ability in low-
compute settings [20], [21]. A significant gap is the
incorporation of Al-driven load shedding in systems
facing limited connectivity and real-time processing
limitations. Additionally, cybersecurity issues and
model transparency (XAI) are still not thoroughly
examined in off-grid environments. This method ensures
system stability and prevents blackouts, keeping
essential services running [1].

This review focuses on five key themes: (1) Al in
load forecasting, (2) load classification and
prioritization, (3) optimization of demand response, (4)
management of energy storage and discharge, and (5)
detection of anomalies in energy usage. Each area is
examined via essential methodologies, practical uses,
and the challenges faced. Limited Renewable
Generation Solar PV systems, a common component of
off-grid setups, do not generate electricity at night,
reducing the available energy supply [2]. The review
wraps up by synthesizing emerging trends and future
research directions essential for advancing intelligent
off-grid energy systems.

1. Al for Load Forecasting in Off-Grid Systems

Accurate load forecasting is essential for ensuring
energy reliability at night. Al algorithms can predict
energy demand by analysing historical consumption,
weather conditions, and occupancy patterns [4].
Artificial Neural Networks (ANNs) [7] are commonly
used for their capacity to learn complex nonlinear
relationships. LSTM networks excel at capturing time-
dependent usage trends [7], and hybrid models like
CNN-LSTM enhance accuracy by integrating spatial
and temporal feature learning [8].

2. Models for Load Classification and Prioritization

In constrained environments, energy efficiency relies on
smart identification of load priorities. Rule-based
systems provide clear-cut classification, yet machine
learning techniques like decision trees and support
vector machines are gaining traction for their ability to
adapt to consumption patterns [6]. These models
categorize and prioritize loads, allowing for immediate
decisions to maintain power for critical services such as
communication or medical devices in battery-
constrained situations [4].

3. Al-Driven Demand Response Optimization

Al improves demand response (DR) strategies by
analysing consumer profiles and adjusting or reducing
demand accordingly. Methods like real-time dynamic
pricing [9], [15], incentive-based programs [5], and
direct load control [10] enable smart interaction with
users or devices to reduce peak demand. These methods
are especially important in off-grid microgrids, where
sudden load spikes can quickly drain storage systems.

4. Control of Battery Energy Storage Systems (BESS)

Optimizing battery use is essential for nighttime load
support. Predictive Al models anticipate energy
generation and demand, allowing for proactive charging
during daylight and strategic discharging at night [3].
SoC optimization models, using historical data, ensure
battery operation stays within safe limits, preventing
overcharge and deep discharge that can harm battery life
[11]. Al manages the interplay between batteries and
supercapacitors in hybrid storage systems to enhance
energy delivery efficiency [12].

5. Anomaly Detection and Reducing Energy Waste

Energy use anomalies, often stemming from faulty
devices or changes in behaviour, threaten energy
reliability. Clustering algorithms like k-means identify
outliers in load patterns [14], whereas autoencoder
neural networks highlight deviations by reconstructing
anticipated data from learned baselines [7]. ARIMA
models for time-series forecasting help identify
unexpected behaviour [8], which supports preventive
maintenance and minimizes waste in energy-constrained
systems [13].

6.  Al-Driven Implementation Framework

Implementing  Al-based cutoff load strategies
successfully requires several stages: data collection [8],
load classification [6], model training [7], system
integration [6], and field validation [12]. Ongoing
monitoring allows the model to adjust to changing
patterns, and retraining with new datasets enhances
performance progressively. Testing through simulation,
along with staged deployment, ensures validation of
robustness across different load conditions.

7. Evidence from Case Studies and Impact on Systems

Mohamed et al. [7] showcased a practical use of Al in
forecasting and optimizing a hydrogen-powered
microgrid, resulting in enhanced load matching and
system reliability. Sankarananth et al. [16] utilized
metaheuristic-Al models in smart grids for efficient
power scheduling at reduced costs. Lissa et al. [17]
demonstrated that deep reinforcement learning can
enhance home energy systems by synchronizing PV
output with indoor environmental control. These cases
demonstrate Al's significant impact on energy
distribution logic and priority management.
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8. Measurable Advantages of Al Integration

Numerous studies indicate substantial improvements in
system performance through Al-driven cutoff strategies.
Improvements in efficiency arise from enhanced load-
supply matching [18], and battery lifespan is prolonged
via smart charging and discharging cycles [11]. Al
improves occupant comfort by maintaining essential
services during power limitations [17] and facilitates
better integration of renewable energy sources [12]. Al
can prevent blackouts and ensure a reliable power

supply [19].
9. Challenges of Implementation in Off-Grid Settings

Al has great potential for off-grid energy management,
but challenges remain. In numerous off-grid areas, data
collection systems are lacking, and hardware limitations
restrict the use of advanced Al models. A lack of local
expertise in Al system development and maintenance
creates additional challenges. Security is a major
concern, as shown in [22], where risks like data
tampering or unauthorized load manipulation in control
systems require secure architectures and defence
strategies to protect Al-enabled IoT deployments.

10. Directions for Future Research and Technology

New studies aim to enhance the accessibility and
practicality of AI for remote applications. Edge
computing allows models to operate locally, reducing
reliance on cloud infrastructure [23]. Federated learning
enables training without the need to transfer sensitive
data [20], and explainable Al enhances trust and
transparency in automated decision-making [21].
Reinforcement learning is increasingly recognized for its
ability to adapt to real-time conditions and optimize
continuously [16].

Al-driven load prioritization represents a
significant improvement for off-grid energy systems,
especially in boosting nighttime reliability when storage
is limited. Literature indicates that improvements in
forecasting, load classification, demand response, and
storage optimization greatly enhance system resilience.
Despite ongoing implementation challenges, particularly
in resource-limited regions, research indicates a clear
trend towards wider adoption of intelligent energy
management solutions. Advancements in lightweight,

explainable, and secure Al models will enhance
sustainable energy autonomy for underserved
communities.

3. METHODOLOGY

This research adopts a data-driven approach to optimize
nighttime energy management in off-grid solar systems
using Al-based load prioritization. The methodology
integrates real-world energy data with predictive
modeling to simulate battery performance under
different load control strategies.

3.1 Research Design

The study employs a comparative experimental design

that simulates two operational scenarios: one with
traditional fixed load control, and the other using Al-
driven dynamic prioritization. Load categories are
segmented into three tiers based on criticality Internet
and networking (Ist), lighting (2nd), and USB/CCTV
devices (3rd) to support intelligent shedding during low
power availability.

The system architecture developed for this study
is illustrated in Figure 1. The setup consists of an off-
grid photovoltaic energy system equipped with a solar
cell array connected to a charger controller. Energy
harvested during the day is regulated by the controller
and stored in a 13.2V LiFePO. battery. This stored
energy is then distributed to prioritized loads during
nighttime operation. Loads are divided into three
categories based on criticality: communication devices
(highest priority), lighting (medium priority), and USB
charging/CCTV systems (lowest priority). Each load
category is connected through a switching mechanism
that enables selective disconnection based on battery
status and Al-driven prediction outcomes.
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Fig. 1. System diagram of the off-grid solar energy
architecture with Al-based load prioritization.
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An JoT gateway continuously monitors system
parameters, including photovoltaic output, battery
voltage/current, and individual load consumption. This
gateway is linked to a cloud-connected database and
visualization dashboard for real-time data logging and
offline model training. Load status and priority control
logic are applied using a decision model embedded
within the gateway or edge device.

This design supports dynamic load management
where essential services are maintained as long as
possible under energy-constrained conditions. It enables
real-time prioritization decisions based on historical
usage trends and forecasted energy availability, central
to the experimental simulation and evaluation conducted
in this research.

3.2 Data Collection

Measurements of the energy system were taken every 5
minutes in 2024 from a solar installation off the grid in
Chiang Mai, Thailand. The monitoring system recorded
PV array input, battery parameters (voltage, current,
power), and load power consumption categorized by
priority tiers. The dataset included more than 105,000
records, averaged to hourly values for seasonal and
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model analysis.

The data was divided into three operational seasons
for experiments based on regional climate: Rainy (May—
October), Winter (November—February), and Summer
(March—April). This enabled focused training and
assessment of predictive models across different solar
irradiance and load scenarios.

Data preprocessing fixed gaps and anomalies for
reliable analysis. Short-term communication
interruptions (< 2 hours) had missing values filled
through linear interpolation, and transient sensor noise
along with outliers were addressed using a rolling
average filter (window size = 3). The steps maintained
the temporal features of the signals, allowing the dataset
to function as a reliable and representative input for
evaluations of both Al and non-Al control strategies.

3.3 Data Analysis

Five machine learning models were used in the
predictive evaluation: Logistic Regression, Random
Forest, Gradient Boosting, Support Vector Machine, and
Decision Tree. Models were trained to estimate battery
discharge profiles and forecast nighttime support
duration using hourly PV generation, battery state, and
load demand across priority tiers.

Model development used a seasonal partitioning
method. Data from the rainy season (May—October) was
utilized for training, while the winter (November—
February) and summer (March—April) seasons acted as
independent test sets to assess generalization across
varying solar resource conditions. To enhance
robustness, October was separated from the Rainy
season and utilized as a held-out intra-season test set.

K-fold cross-validation was used on the Rainy
season training data to evaluate model stability and
estimate performance variance across various folds.
Two operational strategies were compared in the
simulation.

3.3.1. Al-driven load prioritization disconnects
lower-priority loads when energy reserves
are predicted to be insufficient.

3.3.2. The non-Al baseline keeps all loads active
until the battery hits its critical threshold.

Performance was measured with Mean Absolute
Error (MAE), Root Mean Square Error (RMSE), and the
coefficient of determination (R?). Daily support hours
exceeding 24 Ah (20% of nominal capacity) were
calculated to evaluate system resilience, indicating the
capacity to maintain essential loads in low-solar
conditions. To quantitatively assess the performance of
the predictive model used in this study, we define a set
of standard regression evaluation metrics commonly
applied in battery discharge prediction and time-series
modeling: Mean Absolute Error (MAE), Root Mean
Square Error (RMSE), and the Coefficient of
Determination (R? score). These metrics compare the
predicted battery values against observed data, allowing
for direct evaluation of model effectiveness in
simulating energy availability under varying load
scenarios.

Let:

e Yy, denote the observed (actual) battery state of
charge (in Ah) at time, i

. )A/i be the predicted battery state from the model at
the same time step,

e y.,be the mean of all observed values over the
dataset,

e nrepresent the total number of observations.

The Mean Absolute Error (MAE) is defined as:

1 .
MAE:;z;lzl‘yl_-yl_ e)

This metric reflects the average absolute deviation
between the predicted and actual battery values, offering
a straightforward interpretation of prediction accuracy in
the same unit as the variable (Ah).

The Root Mean Square Error (RMSE) provides a
measure that penalizes larger errors more significantly:

1 A \2
RSME = ;ZH (y,-3) 2)

This is especially useful in off-grid energy systems
where large prediction errors can result in failure to
maintain critical loads, thus RMSE helps identify worst-
case deviations.

The Coefficient of Determination (R?) evaluates
the proportion of variance in the observed data that is
predictable from the model:

Rt 21 2l 0) 3)
Zl—:l(yi _yi)

A value close to 1.0 indicates that the model
explains most of the variability in the battery state over
time, demonstrating reliable forecast performance.

In this study, these metrics are computed daily and
aggregated to assess both short-term prediction stability
and long-term model consistency over the rainy season
dataset. These results provide evidence of the model’s
effectiveness in supporting real-time load control
decisions and validate its suitability for integration into
energy-limited [oT-based solar systems.

We used Random Forest Regression as it
effectively captures non-linear relationships and reduces
overfitting. Grid search tuned key hyperparameters:
number of estimators (n=100-500), maximum depth (3—
10), and minimum samples per leaf. A 5-fold cross-
validation method guaranteed generalisation. Linear
Regression and Support Vector Regression (SVR) were
assessed for baseline comparison. Random Forest
consistently surpassed the alternatives in MAE and
RMSE throughout the entire dataset.

3.4 Data Validity and Reliability

We verified the predictive performance of each machine
learning model through season-specific and overall error
analysis on the complete dataset. We calculated
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accuracy metrics like R?2, MAE, and RMSE for both
training and test sets to verify model generalization.
Seasonal k-fold cross-validation evaluated result
consistency across different data subsets, ensuring
statistical reliability. Simulated outputs were compared
with actual system load thresholds to confirm
operational reliability in real-world conditions. Daily
performance tracking of the Rainy, Winter, and Summer
datasets showed consistent model behavior over time,
with little variation in prediction accuracy. This layered
validation method guarantees the reliability and
reproducibility of the suggested Al-driven load
prioritization framework in actual off-grid solar energy
settings.

3.5 Research Limitations

This work utilized data covering all three seasonal
conditions however, the analysis was performed entirely
in a simulation environment without deployment to
physical hardware. As such, real-time performance
under embedded controller constraints and varying field
conditions has not yet been verified. Future studies will
focus on edge-based implementation and adaptive
control strategies to validate operational reliability in
live off-grid solar systems.

4. RESULT AND DISCUSSION

Figure 2 shows the battery charge level (in Ah) recorded
during the rainy season in an off-grid solar energy
system lacking Al-based load prioritization. The dashed
horizontal line indicates the critical battery threshold of
24 Ah (20% of total capacity), below which essential
loads may be interrupted. The trend shows several
instances where the battery fell below the safety
threshold, especially during overcast or low irradiance
days. Mid-season, battery level fluctuations are more
noticeable, showing a greater mismatch between energy
generation and load demand. Without intelligent load
shedding, discharge speeds up, operational runtime
decreases, and critical loads risk losing service. These
findings highlight the need for predictive load
management techniques like Al-based prioritization to
ensure system stability and safeguard energy availability
in challenging environmental conditions.

Battery Level Comparison with Error Bars {Rainy Season)

Battery Level (Ah)
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Fig. 2. Daily battery level profile without Al load control
during Rainy season.

Figure 3 shows the hourly distribution of power
consumption for prioritized electrical loads during the
rainy season. The stacked area chart divides total load
into three categories: communication devices (Internet

& Network), lighting systems, and auxiliary loads
(CCTV and USB charging). These categories align with
first-, second-, and third-priority load classes. The
visualization shows steady baseline usage from high-
priority communication devices, whereas lighting and
auxiliary loads display greater fluctuations, especially in
the early evening and nighttime. The third-priority
group, CCTV and USB, exhibits the most variability and
highest peak values, posing a challenge for energy-
constrained battery systems. The stacked load profile
highlights the need for tiered load management, as the
total demand during low photovoltaic generation can
surpass the system's storage capacity. This figure's
analysis supports Al-driven load shedding strategies that
extend battery life by temporarily reducing lower-
priority loads when storage falls below set thresholds.

Stacked Power Usage by Priority Load Category (All Season)

Power Consumption (W)

Fig. 3. Stacked power usage by priority load category
during the Rainy season.

Table 1 shows the predictive performance of
GradBoost, Decision Tree, Random Forest, LogReg, and
SVM-RBF, trained on rainy-season data and evaluated
on the Rainy, Summer, and Winter seasonal subsets.
Model accuracy and macro-averaged Fl-score
(F1_macro) are presented to reflect -classification
precision and recall across load cut-off priority classes.
Throughout all seasons, GradBoost and Decision Tree
recorded the highest F1 _macro scores in the Rainy
season, demonstrating effective class  balance
management in the training domain. Most models-
maintained accuracy values above 0.96 across all test
scenarios, but the F1_macro metric shows significant
variation, especially in the Winter season due to class
imbalance affecting classification robustness. Models
like Random Forest and GradBoost showed high
accuracy in both Summer and Rainy conditions,
indicating good generalization to varying photovoltaic
generation profiles. The perfect accuracy in summer for
all models except Decision Tree shows high solar
availability and less variability in load cut-off events
during this time.

The results show that while accuracy indicates
nearly perfect performance, F1 _macro reveals important
insights into seasonal class distribution effects,
especially in Winter, where low irradiance results in
fewer cut-off events and potential bias towards majority
classes.

Figure 4 shows a comparison of five machine
learning models: Gradient Boosting, Decision Tree,
Random Forest, Logistic Regression, and Support
Vector Machine with RBF kernel, assessed using
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secasonal datasets for Rainy, Summer, and Winter
conditions. Every data point represents the model's
performance for a particular season, with Accuracy on
the horizontal axis and the macro-averaged F1-score on
the vertical axis.

Table 1. Performance comparison of 5 machine learning
models for battery discharge prediction.

Model Season Accuracy F1 macro
GradBoost Rainy 0.992527 091212
DecisionTree Rainy 0.990036  0.831887
RandomForest  Rainy 0.98981 0.788192
LogReg Rainy 0.980978  0.376105
SVM-RBF Rainy 0.979846  0.32994
LogReg Summer 1 1
RandomForest ~ Summer 1 1
SVM-RBF Summer 1 1
DecisionTree Summer 1 1
GradBoost Summer 0.999308  0.499827
DecisionTree Winter 0.964113  0.418604
GradBoost Winter 0.965148  0.349394
LogReg Winter 0.967219  0.327779
RandomForest ~ Winter 0.967219  0.327779
SVM-RBF Winter 0.967219  0.327779
Model Performance Across Sessans (Azcuracy vs. F1_macra)
) o, g

0965 0970 0975 0380 0.985 0.9%0 0995 1000

Fig. 4. Accuracy vs. F1-Score comparison across seasons.

The plot shows that models like Gradient Boosting,
Decision Tree, and Random Forest consistently reach
high accuracy and competitive Fl-scores during the
Rainy season, where the variability in solar generation
creates tougher prediction challenges. Summer results
show consistently high accuracy across all models, with
slight variations in Fl-scores, indicating stable solar
availability. Winter season performance shows lower
F1-scores across all models, with Decision Tree and
Gradient Boosting demonstrating slightly  better
resilience.

The results show that accuracy stays high
throughout the seasons, but the Fl-score provides a
better understanding of model strength during seasonal
changes, especially in difficult or unbalanced prediction
situations in off-grid solar energy management.

Figure 5 shows the predictive accuracy of five
regression models during rainy, summer, and winter
seasons using MAE, RMSE, and R? metrics. Random
Forest Regression shows the lowest error values and
highest R? scores across all seasons, highlighting its
strong generalization and adaptability to seasonal
changes. Decision Tree Regression achieves competitive
accuracy, especially during rainy and summer periods,
but exhibits higher error variance in winter. Gradient
Boosting shows decent performance, performing well in
summer but displaying increased MAE and RMSE in
rainy and winter conditions. Linear Regression and SVR
show the poorest performance, with higher error rates
and lower R? values, indicating their limited ability to
model the dataset's nonlinear relationships. These
findings emphasize the benefits of using ensemble
methods for predicting energy in off-grid solar systems
during seasonal changes.

Fig. 5. Model performance comparison across seasons.

Figure 6 shows the stability evaluation of five
classification models during rainy season conditions
with 5-fold cross-validation. Random Forest, Gradient
Boosting, SVM-RBF, and Decision Tree show high
median accuracy and tight interquartile ranges,
reflecting strong performance and minimal sensitivity to
changes in training data. Logistic Regression shows
significant accuracy variation and a lower median,
underscoring its shortcomings in capturing the nonlinear
and complex patterns typical of energy consumption and
generation data this season. These results indicate that
ensemble and kernel-based approaches provide better
stability in ensuring prediction accuracy amid changing
weather and energy supply conditions.

Model Stability — Rainy (CV, 5-fold) — Accuracy
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Fig. 6. Rainy season model stability (5-fold CV).

Figure 7 shows the accuracy distribution for five
machine learning models Logistic Regression, Random
Forest, Gradient Boosting, SVM-RBF, and Decision
Tree, assessed with 5-fold cross-validation in the winter
season. All models show narrow interquartile ranges,
reflecting consistent performance across folds. The
median accuracy for most models is about 0.92, with
Random Forest and SVM-RBF displaying slightly
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higher upper limits, indicating a bit better best-case
performance.

Model Stability — Winter (CV, 5-fold) — Accuracy

uncertainty, likely from variable solar irradiance and
greater battery resource demands.

Cross-Validation Stability — Accuracy per Model & Season
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Fig. 7. Winter season model stability (5-fold CV).

Gradient Boosting and Decision Tree show similar
averages but with wider ranges, whereas Logistic
Regression has competitive accuracy but more
variability in results. These findings show that in winter,
when solar energy is less available, models perform
consistently with little variation, demonstrating their
reliability in challenging energy conditions.

Figure 8 shows the stability of five machine
learning models through cross-validation in the summer
season. Compared to the results in Table 1, all models
show perfect or near-perfect accuracy, with most
achieving an accuracy of 1.0 and a high F1-macro score
for this season. The lack of variance in the cross-
validation plot matches these metrics, showing that the
models predicted load cut-off priorities accurately in the
summer dataset.

Model Stability — Summer (CV, 5-fold) — Accuracy

Accuracy
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Fig. 8. Summer season model stability (5-fold CV).

Figure 9 shows the cross-validation stability of five
machine learning models, comparing their accuracy
across rainy, winter, and summer seasons. Accuracy
values are presented as mean + standard deviation for
each season, offering insight into predictive
performance and consistency. Results show that model
stability changes greatly with the seasons. During
summer, all models reached perfect accuracy with
minimal variance, showing a highly predictable
environment thanks to steady solar energy supply.
Winter results stayed strong across all models, but
showed a bit more variability, indicating moderate
changes in solar generation. The rainy season showed
significant differences, with models like Random Forest,
Gradient Boosting, and SVM-RBF remaining stable,
whereas Logistic Regression had lower mean accuracy
and the highest variance. These findings indicate that
some models maintain high performance despite
seasonal changes, but the rainy season brings increased

. i =
[} : (3

o = o

Accuracy (mean + std)

o

u venter
Summer
& Rainy

o
\oaRed orest G{ad\aofﬁ‘ S\JMAREF Deds‘\onﬁee

Ra {\d“mF

Fig. 9. Cross-validation stability of model accuracy across
seasons.

The experimental results show that model
performance in optimizing load cut-off priority varies by
season, with environmental conditions affecting
predictive stability and accuracy. During summer, all
models reached perfect or nearly perfect accuracy with
minimal variance, showing a stable prediction
environment thanks to consistent solar generation and
fewer fluctuations in battery discharge patterns. Winter
performance was solid for most models, though some
variability was noted due to occasional drops in PV
input. The rainy season presented significant challenges,
leading to notable accuracy declines and increased
variance, especially for Logistic Regression. This
indicates that simpler linear models have difficulty in
conditions of frequent low irradiance and irregular load
demands.

The results support the initial hypothesis that Al-
based optimization can enhance battery life, particularly
in variable energy conditions. Ensemble methods [24]
like Random Forest and Gradient Boosting consistently
surpassed other models throughout all seasons, ensuring
greater stability and predictive accuracy. This highlights
the gap in the literature, showing that there has been
little exploration of optimization strategies for off-grid
energy systems tailored to specific seasons. Seasonal
differences emphasize the need for context-aware
control strategies, indicating that static cut-off
thresholds might be less effective than adaptive, Al-
driven approaches.

These findings enhance the theoretical framework
by demonstrating that ensemble learning models offer a
stronger solution for energy management in fluctuating
solar conditions, thereby improving nighttime load
support. The findings create avenues for future research,
like combining hybrid ensemble techniques with real-
time sensor input to enhance adaptability. This method
could allow for flexible, season-sensitive cut-off
strategies that enhance energy availability and extend
battery life. The methodology can also extend to other
renewable-powered microgrids, paving the way for
more resilient and efficient energy management
solutions.
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5.  CONCLUSION

This research analyzed Al-driven load cut-off
prioritization for an off-grid solar energy system in
Chiang Mai, Thailand, through a comparative

assessment of five predictive models. The results show
that seasonal factors significantly impact model
performance, with the optimized model consistently
providing better predictive accuracy, stability, and
reliability in forecasting battery support time. These
findings enhance the field by demonstrating that season-
aware predictive modeling can greatly optimize energy
management for off-grid systems, minimizing the risk of
early battery depletion and prolonging nighttime
availability.

These results are important for sustainable energy
management. Optimizing load allocation allows critical
services to run smoothly without the need for expensive
hardware upgrades. Al-driven prioritization frameworks
can extend beyond rural electrification to other critical
areas, like maintaining uptime for telecom cell sites,
supporting vital medical equipment, or ensuring
continuous operation in industrial facilities. This
broadens the use of Al load optimization from
residential off-grid systems to essential infrastructures.

The research has certain constraints. The dataset
was limited to one site and one year of seasonal data,
potentially missing variability over longer periods or
different geographic areas. The results show strong
evidence from simulation, but real-world deployment on
embedded hardware hasn't been tested yet, raising
concerns about latency and energy consumption in
practice.

Future enhancements should involve testing across
diverse datasets over multiple years and sites to improve
generalizability, along with implementing optimized
models on embedded controllers for real-time
assessment. Implementing adaptive control mechanisms
can enhance resilience in fast-changing environments.
The findings advocate for integrating Al-driven energy
management systems into rural electrification and
renewable microgrid policies, promoting stable and
dependable power access. These methods enhance
energy efficiency, extend battery life, and minimize
disruptions in residential and industrial off-grid settings.
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