
Bisht K.S., Ahamad N., and Awasthi S. / International Energy Journal 25 (2025) Special Issue 1A (195 – 202) 

 

©2025. Published by RERIC in International Energy Journal (IEJ), selection and/or peer-reviewed under the responsibility of the Organizers of the “International 

Conference on Energy Transition and Innovation in Green Technology (ICETIGT 2024)” and the Guest Editors: Dr. Prabhakar Tiwari and Dr. Shekhar Yadav of 

Madan Mohan Malaviya University of Technology, Gorakhpur, India. 

www.rericjournal.ait.ac.th  
 

195 

 
Abstract –To meet the growing demand for electricity and ensure a sustainable future, there is a significant shift 

towards distributed generation (DG), including non-renewable energy sources. The stability and reliable operation 

of DGs, which involve non-uniform power generation, present challenging problems. Proper fault diagnosis and 

mitigation are crucial in these systems. Consequently, reliable fault identification and mitigation are essential to 

ensure the trustworthiness and functionality of DGs. Established mathematical models for fault identification, 

location, and system isolation can be time-consuming and inaccurate. With advancements in machine learning (ML) 

and artificial intelligence (AI), these technologies have found applications in distributed generation systems (DGS). 

Therefore, this article investigates the use of Mutual K-Nearest Neighbors (M-KNN) for fault identification. This 

study considers a 100 km grid-connected distributed generation system comprising two distributed generators (DGs), 

simulated using MATLAB® to obtain data for ten different faults at various locations spaced at 2 km intervals. 

Subsequently, M-KNN in Python is employed for fault classification to accurately determine the nature of faults. To 

enhance the robustness of the model, a grid search approach with and without cross-validation (CV) is utilized. The 

achieved training and testing accuracies approach 99%, surpassing the performance of Basic KNN (B-KNN) models. 

 

Keywords – Power System, Distributed Generation System (DGs), Renewable Energy, Fault Identification, K-

Nearest Neighbors (KNN), Mutual KNN (M-KNN), Machine Learning (ML), Artificial Intelligence (AI). 
 

11. INTRODUCTION 

Distributed generation (DG) refers to the process of 

generating energy close to the point of consumption, 

typically at kilowatt (kW) or, in some cases, megawatt 

(MW) levels. It encompasses various forms of small-

scale generation, including renewable energy sources. 

Integrating power from these dispersed generation 

stations with the conventional grid offers an economical 

solution. This integration achieves significantly reduced 

transmission expenses, minimal distribution outlay, 

enhanced efficiency, improved reliability, substantial 

reduction in maintenance costs, and promotes an 

environmentally friendly energy culture [1]. 

However, as the number of DG units increases, the 

probability of faults also rises. This necessitates the 

detection of fault locations with minimal error and, 

ideally, the prediction of fault types within the same or 

shorter time frame compared to existing methods. Thus, 

the incorporation of distributed generation in electricity 

generation and distribution has recently become a major 

focus for electrical engineers worldwide [2]. 

The implementation of these systems requires the 

detection of both the type and location of faults within 

the integrated distribution system. According to [3], [4], 

faults in DGs can result from various factors such as 

overloading, operational errors, short circuits, 

underground vegetation interference, and neglected 
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maintenance due to aging. The most common faults in 

overhead distribution systems include line-to-ground 

(LG), double line (LL), double line-to-ground (LLG), 

and three-phase (LLL) faults. As per research published 

by [5], line faults are the most prevalent in distribution 

systems. Contemporary mathematical models with 

relays have been used for a long time to estimate and 

isolate faulty zones in power distribution systems. 

However, with advanced scientific tools like Artificial 

Intelligence (AI) and Machine Learning (ML), new and 

optimal methods are being researched globally. 

For example, a method proposed by [6] using ML 

reduces the amount of dataset required for training and 

claims higher accuracy in detecting and classifying fault 

events. However, this method is limited to detecting and 

classifying LL and LG faults with a maximum accuracy 

of 96.66% and 91.66%, respectively. Another study [7] 

used discrete wavelet transform along with ML as a 

classifier to locate faults in both balanced and 

unbalanced radial systems, claiming 100% accuracy 

except for LLLG and LLL faults, which again limits the 

method's applicability. Therefore, a reliable tool for 

identifying all types of faults is required for grid systems. 

Srinivasan et al. [8] employed ML-based Link 

Fault Identification and Localization (ML-LFIL), which 

analyzes data gathered from normal traffic flow, 

considering end-to-end delay, packet loss, and aggregate 

flow rate, achieving up to 97% performance. Many 

researchers [9] - [22] have worked globally on fault 

identification and classification using AI and ML. Their 

work and results are summarized in Table I. 

In general, accuracy and computational complexity 

are key issues in fault classification and localization. 

Table I shows that various ML algorithms and networks 

are being researched for fault identification and precise 
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fault classification. The literature review reveals that 

KNN is the most preferred ML algorithm by researchers. 

The simplicity of the algorithm and its better 

performance in specific fields, after modifications to the 

basic KNN, make it a popular research area. Various 

KNN variants have emerged, each with improved 

reliability in fault location, classification, or response 

time. Research is ongoing to develop a single algorithm 

that achieves all these parameters. 

Therefore, in this article, Mutual K-NN (M-KNN) 

has been tested and validated for fault classification in a 

complex distributed power system. The system 

considered is a 100 km grid-connected distributed 

generation system comprising two distributed generators 

(DG) with loads, with ten faults considered at various 

locations, including data at every 2 km of the distributed 

line. The comparative results reveal that the proposed K-

NN algorithm achieves a very high accuracy of more 

than 99%. This paper is organized as follows: Section II 

introduces Mutual KNN (M-KNN), Section III discusses 

the methodology of implementing the M-KNN 

algorithm, Section IV presents the results, and finally, 

Section V concludes the paper and highlights future 

research prospects. 

 
Table 1: Overview of fault detection and identification. 

Ref Author Method Results Pros Cons 

[9] Omaer et al. Extreme Learning 

Machine 

No of Faults Considered: 

10 

Accuracy: 99.09% 

Fast and Less 

computational 

complexity compared to 

the regular ANN model 

Used with maximum of two 

generator not on DG 

[10] Tong et al. CNN Model No of faults considered: 5 

Accuracy: 98.24% 

High accuracy with 

fewer faults 

Limited fault scenarios 

considered 

[11] Guo et al. CNN Model with 

Hilbert-Huang Transform 

filter 

No of faults considered: 

10 

Accuracy: 99.92% 

High accuracy with 

advanced filtering 

techniques 

Potentially high computational 

cost 

[12] Lee et al. CNN Model No of faults considered: 4 

Accuracy: 98.00% 

Reliable fault detection 

with limited faults 

Limited fault scenarios 

considered 

[13] Tawfik, and 

Morcos 

ANN Model 

Using Prony method 

No of faults considered: 

10 

Accuracy: 98% 

Effective for specific 

fault scenarios 

Accuracy is limited to specific 

types of faults 

[14] Abdullah ANN Model with 

Discrete Wavelet 

Transform 

No of faults considered: 

10 

Accuracy: 98.00% 

Enhanced fault detection 

using DWT 

Computationally intensive 

[15] Fahim et al. Spare filter No of faults considered: 

11 

Accuracy: 99.72% 

High accuracy with 

spare filter 

Potentially high computational 

cost 

[16] Vyas et al. Chebyshev Neural 

Network 

With Undecimated DWT 

No of faults considered: 

10 

Accuracy: 98.69% 

Improved accuracy with 

advanced methods 

Computationally intensive 

[17] Mukerjee et 

al. 

Probabilistic Neural 

Network 

No of faults considered: 

10 

Accuracy: 99.33% 

High accuracy with 

probabilistic approach 

Complex implementation 

[18] Y. Zhang et 

al. 

Deep Belief Network No of faults considered: 9 

Accuracy: 97.08% 

Effective for complex 

systems 

Lower accuracy compared to 

other methods 

[19] Majid et al. KNN No of faults considered: 

10 

Accuracy: 98.06% 

Simple and effective Lower accuracy compared to 

advanced methods 

[20] Dasgupta et 

al. 

KNN with cross – 

correlation 

No of faults considered: 

10 

Accuracy: 99.67% 

High accuracy with 

cross-correlation 

Potentially higher computational 

cost 

[21] Awasthi et. al KNN No of faults considered: 

10 

Accuracy: 98.98% 

Effective for DG with 

renewable energy 

Less Accuracy especially in 

testing data 

[22] Awasthi et. al Shallow artificial 

neural network 

No of faults considered: 

10 

Accuracy: 95.31 % 

Effective for DG with 

renewable energy 

Very less accuracy 

 

2. FAULT DETECTION LOCATION 

METHODS 

There are two primary methods for fault detection and 

location in power systems: 

a) Mathematical Approach: This method involves 

calculating an approximate model of the power 

system and triggering various relays to isolate the 

fault [23]. A disadvantage of this method is that it 

may isolate healthy sections of the transmission 

network during fault occurrences. Additionally, 

there is potential to reduce the response time for 

detecting and classifying faults. 

b) Machine Learning (ML) Approach: ML algorithms 

offer simplicity, quick response, and high 

reliability, making them a dependable system for 

fault location and identification. Although 

significant research has been conducted on 

conventional mathematical models, the emergence 

of ML as a potent technological tool presents great 

opportunities for further study. Various ML 

algorithms, including Decision Trees, Bagging 

http://www.rericjournal.ait.ac.th/
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Classifiers, Random Forest, Naive Bayes, and 

Regression methods, have been extensively 

studied. Among these, K-Nearest Neighbors (K-

NN) stands out due to its speed, simplicity, and 

reliability [24]. 

2.1 Mutual K-NN Algorithm  

The superiority and efficacy of the K-NN-based method 

have been established by [25], proving it to be a potent 

tool for refining fault categorization and localization in 

distribution systems with numerous DGs. The simplicity 

of the K-NN algorithm, combined with slight tweaks to 

metric measurement techniques and parameter tuning, 

has demonstrated better performance in terms of fault 

location predictability and classification within a 

competitive timeframe. Research on different ML 

algorithms, particularly on plant species classification, 

has shown that the K-NN algorithm performs better than 

other algorithms [26]. K-NN does not require a training 

process or any prior information about the statistics of 

training instances; it can directly classify faults based on 

the training set [27]. As per [28], the asymptotic sample 

error of K-NN compared to the Bayes error rate is lesser 

by twice the value. 

The basic K-NN method revolves around two 

principles: 

a) Search Stage: A unique and fixed value of K is used 

during the search stage, but the algorithm is 

sensitive to the value of K, and its selection 

significantly affects the results. 

b) Decision Stage: Classification is based on a voting 

principle, which ignores next majority elements and 

disregards their significance. 

Various modifications to the basic K-NN method, 

primarily by altering the distance metric to identify 

nearest neighbors, have been proposed. The basic K-NN 

method is based on finding the shortest distance using 

either the Euclidean or Manhattan distance method 

between the given samples of the dataset and the query 

[29]. However, if the distance metric is weighted and 

calculated using the following formula [30]: 

𝑊𝑖 =
1

𝐷(𝑥𝑖 , 𝑥𝑓)2
 (1) 

Where: 

• 𝑥𝑖 is vector i; 

• 𝑥𝑓  is fault vector to be classified; 

• D is the distance; 
By using this fact, the method becomes Weighted-

KNN. Some scientists have proposed their own metric 

systems, such as Hassanat metric KNN (H-KNN), where 

the distance is given by: 

𝐷(ℎ𝑎𝑠𝑠𝑎𝑛𝑎𝑡) = ∑(

𝑚

1

𝑎𝑖  , 𝑏𝑖) 
 
(2) 

K-NN acquires various forms depending on the 

distance matrices adopted, such as K-Means [31], 

Generalized Mean Distance KNN (GMD-KNN) [32], 

Ensemble Approach KNN (E-KNN) [33], Adaptive 

KNN [34], etc. The performance of basic K-NN depends 

heavily on the affinity to the nearest neighbor, 

disregarding that one or more of the nearest neighbors of 

a data point may be corrupt due to the wrong 

determination of K in K-NN. Tackling outliers, which 

are left over or missed even after data pre-processing, is 

crucial, especially with small training data, to make K-

NN one of the most effective ML algorithms. Generally, 

a large value of K helps reduce noise, but this comes at 

the computational cost of the algorithm. Also, for 

uniformly distributed points, determining the 

appropriate pre-decided value of K is challenging. 

Researchers have developed Mutual K-NN (M-

KNN) to address these issues, using mutuality among 

nearest neighbors for query fault 𝑋𝑓 to ascertain its label. 

The M-KNN algorithm searches for mutual nearest 

neighbors of 𝑋𝑓  and concludes a label that is more 

authentic due to the exclusion of pseudo neighbors or 

outliers. Mathematically, for a given dataset, M-KNN 

for a new fault f is given by [34]: 

𝑀𝑘1,𝑘2
𝑓 = 𝑥𝑖 ∈ 𝐷|𝑥𝑖 ∈ 𝑁𝑘𝑖

(𝑥) ∧ 𝑥 ∈ 𝑁𝑘2
(𝑥𝑖) (3) 

where 𝑁𝑘(𝑥) is a set of K Nearest Neighbors (NN) of 

the query fault. Simply put, the above equation states 

that faults f1 and f2 are mutual neighbors when f1 belongs 

to the K1 NN of another fault f2, and at the same time, f2 

is one of the K1 NN of f1. Figure 1 provides a better 

visualization for understanding the concept of mutual 

KNN [32]. It shows that when the value of K is taken as 

k = 4, the nearest neighbors for f1 are f2, f3, f8, and f9. 

Similarly, for f2, the nearest neighbors are f4, f8, f9, and 

f10, and for f3, the nearest neighbors are f3, f5, f7, and f8 

respectively.  
It is evident that f1, though not an immediate 

neighbor of f2, f3, f8, and f9, treats them as nearest 

neighbors when k = 4. In the simplest terms, for f1, NN 

can be f2 and f3, but the reverse is not true when seen 

from the perspective of f2 and f3, respectively. Now, if 

we assign K1 and K2 as K for understanding the concept, 

then equation 3 along with NN become 

𝑀4(𝑓1 ) = {𝑓2, 𝑓3, 𝑓8,𝑓9}; 

𝑀4(𝑓2) = {𝑓4, 𝑓8, 𝑓9,𝑓10}; 

𝑀4(𝑓6 ) = {𝑓3, 𝑓5, 𝑓7,𝑓8}; 

(4) 

It is quite apparent why f1 should not be discarded 

since it is acting like an outlier and will adversely affect 

the outcome. This is addressed by the ML algorithm and 

is the basic concept of M-KNN for such types of noisy 

data sets, making M-KNN one of the most robust and 

easier algorithms for implementation concerning 

inconsistent and noisy data. Additionally, adopting some 

pre-processing steps before subjecting the data to the M-

KNN machine learning algorithm turns out to be a very 

effective tool, providing precision within a minimal time 

frame. 

http://www.rericjournal.ait.ac.th/
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3. PROPOSED METHODOLOGY 

The flow chart for the proposed method is given in 

Figure 2 and describes the entire process of the 

methodology implemented in the M-KNN algorithm. 

The process is divided into four main sections: 

a) Data Collection: Due to the scarcity of ideal data in 

the real world, simulation is necessary. Fault data 

from a substation should ideally be collected for all 

types of faults and at all possible distances, but this 

is a time-consuming and difficult process, making 

real-world data acquisition practically impossible. 

Therefore, simulations are conducted in 

MATLAB©, and data is collected for all types of 

faults at equal intervals of 2 km each along a 100 

km line. A near-practical 132 kV, 50 Hz, star-

grounded system with two distributed generation 

systems connected via a 100 MVA, 132/66 kV 

step-down transformer and terminated by two 

distributed generators of 100 kVA at 3.3 kV is 

simulated. Fault parameters are observed at equal 

intervals of 2 km. A 10 kW load dissipates power. 

 

b) Data Pre-Processing: The data collected in the 

previous step is in raw form, containing many 

outliers and extreme values that can skew the 

results and provide incorrect outcomes. Therefore, 

pre-processing of the collected data is essential 

before training and testing. The pre-processing 

process is executed in four stages: 

• Refining Data: This step involves eliminating 

incorrect or noisy data and addressing any 

missing data. 

• Transforming Data: Using various processes 

such as the selection of specific attributes and 

normalization, data is made suitable for the 

mining process. 

• Optimization of Data: The processing time of 

any ML algorithm depends on the volume of 

data to be processed. Hence, redundant data is 

eliminated to handle less data for classification. 

It is vital to optimally select data features and 

eliminate unnecessary data without 

compromising the overall effect. 

• Integration of Data: This involves combining 

data obtained from various sources into a single 

data warehouse with larger storage capacity. 

The entire process is depicted diagrammatically in 

Figure 3. 

 

Fig. 1 Data Pre-Processing for M-KNN. 

c) ML Algorithm Realization: Once data is processed 

and converted into an input-output matrix, an ML 

algorithm for M-KNN is created in Python, and 

results are tabulated. 

d) Applying Grid Search: Grid searching is a tool 

available in Python to tune the hyper parameters 

for complex mathematical models to achieve 

optimal data pre-processing. It involves tuning the 

optimal combination of hyper parameters at which 

the algorithm has maximum efficacy using a hit-

and-trial method. In our study, better results were 

achieved after tuning the hyper parameters to n =5 

instead of n = 3 in the basic KNN, with all other 

parameters kept the same. 

http://www.rericjournal.ait.ac.th/
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4. RESULTS AND DISCUSSION 

The grid-connected 100 km distributed power system 

was simulated in MATLAB©, generating different 

faults at 2 km intervals. Voltage and current data from 

both the distributed generators and the grid were 

recorded under all fault conditions, resulting in a dataset 

of size 19x490 [35]. This data was then pre-processed to 

identify and address any outliers, although none were 

observed due to the nature of the simulation data. The 

input data consisted of grid voltage phases A, B, and C, 

as well as voltage and current measurements for DG1 

and DG2 across their respective phases. This resulted in 

an input matrix of fault voltage and current with 

dimensions 18x490, which was used to train both the 

Mutual KNN (M-KNN) model and the basic KNN (B-

KNN) model for comparison. 

To ensure the robustness of the system, the model 

underwent cross-validation (CV), and a grid search (GS) 

was employed to determine the optimal parameters for 

the M-KNN model. Models were created with and 

without grid search, resulting in different configurations, 

which are tabulated in Table II. 

 
Table 2. Different KNN models with their hyper-parameters and accuracy. 

Algorithm/Parameters Hyper Parameters 
Training 

Accuracy 

Test 

Accuracy 

No of Wrongly 

Classified 

Faults 

B-KNN  CV = 5, Without GS 
Algorithm: auto, K = 5, weights: 

uniform, metric: minkowski 
0.8879 0.9694 3 

B-KNN  CV = 0, Without GS 
Algorithm: auto, K = 5, weights: 

uniform, metric: minkowski 
0.9694 0.9694 3 

Basic KNN, CV = 5, With GS 
Algorithm: auto, K = 1, weights: 

uniform, metric: minkowski 
0.9617 0.9898 1 

B-KNNCV = 0, With GS 
Algorithm: auto, K = 1, weights: 

uniform, metric: minkowski 
0.9617 0.9898 1 

M-KNN, CV = 5, Without GS 
Algorithm: brute, K = 3, weights: 

uniform, metric: cosine 
0.9465 0.9898 1 

M-KNN, CV = 0, Without GS 
Algorithm: brute, K = 3, weights: 

uniform, metric: cosine 
0.9898 0.9898 1 

M-KNN, CV = 5, With GS 
Algorithm: brute, K = 5, weights: 

distance, metric: cosine 
0.9694 0.9898 1 

M-KNN, CV = 0, With GS 
Algorithm: brute, K = 5, weights: 

distance, metric: cosine 
0.9694 0.9898 1 

 

 
Table 3: Classification report of the best performing B-KNN and M-KNN models. 

Fault Type 
B-KNN CV = 0 with  GS Mutual KNN CV = 0, without GS 

Precision Recall f1-score Support Precision Recall f1-score Support 

ABC 1 0.92 0.96 13 1 1 1 13 

A to G 1 1 1 11 1 1 1 11 

B to G 1 1 1 10 1 1 1 10 

C to G 1 1 1 11 1 1 1 11 

AB 1 1 1 11 0.92 1 0.96 11 

AC 0.91 1 0.95 10 1 1 1 10 

BC 1 1 1 7 1 1 1 7 

AB to G 1 1 1 7 1 0.86 0.92 7 

AC to G 1 1 1 9 1 1 1 9 

BC to G 1 1 1 9 1 1 1 9 

 

In Table II, various hyper parameters, training and 

test accuracies, and the number of wrongly classified 

faults are documented. It is evident that the training and 

test accuracies of B-KNN with CV = 0 & 5 without grid 

search are comparatively lower than those of other 

algorithms, as illustrated in Figure 4. This indicates poor 

performance of these two methods. Conversely, B-KNN 

with CV = 0 & 5 with grid search demonstrates 

improved performance. 

  

 

http://www.rericjournal.ait.ac.th/
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Fig. 2. Training and test accuracy of different KNN models. 

 

  
Fig. 3. Confusion matrix of worst performing B-KNN. Fig. 4. Confusion matrix of worst performing M-KNN. 

 

 

  
Fig. 5. Confusion matrix of best performing B-KNN. Fig. 6. Confusion matrix of best performing M-KNN. 

 

Furthermore, from Table II and Figure 4, it is 

evident that M-KNN outperforms B-KNN. Specifically, 

the results of M-KNN with CV = 0 and without grid 

search exhibit the highest performance, achieving 

training and test accuracies of 99% with only one 

wrongly classified fault. 

Additionally, a comparison in terms of different 

parameters like precision, recall, f1-score, and support 

for various faults is made between the best performing 

M-KNN and the best performing B-KNN, as shown in 

Table III. From this table, it can be observed that M-

KNN outperforms B-KNN for ABC faults, while B-

KNN demonstrates better performance for AB and AB 

to G faults. Both models perform equally well for single 

phase-to-ground faults (A to G, B to G, C to G), AC and 

BC faults, and AC to G and BC to G faults. 

http://www.rericjournal.ait.ac.th/
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A comparison of the worst-performing KNN and 

M-KNN models is shown in Figure 5 and Figure  6, 

respectively, in the form of confusion matrices. It is 

evident that even in its worst performance, M-KNN has 

only one wrong classification compared to three in B-

KNN. Figure 7 and Figure 8 show the confusion 

matrices for the best-performing KNN models. In B-

KNN, a line-to-line (AC) fault is misclassified as a 

three-line (ABC) fault, whereas in M-KNN, a line-to-

line (AB) fault is misclassified as a line-to-line-to-

ground (AB-G) fault, which is a closer approximation.  

5.  CONCLUSION 

This article investigated fault classification techniques 

using machine learning in a 100 km grid-connected 

distributed power system with two distributed generators. 

The system was simulated in MATLAB, generating 

various faults, and capturing corresponding fault 

voltages and currents. These parameters served as the 

input matrix for training, testing, and validating Mutual 

K-nearest neighbours (M-KNN) models in Python. 

Different configurations, including cross-validation (CV) 

with and without grid search (GS), were explored and 

compared with basic K-Nearest Neighbors (B-KNN). 

 The following conclusions are drawn: 

• M-KNN consistently outperforms B-KNN across 

all scenarios. 

• B-KNN without grid search yielded suboptimal 

results, whereas M-KNN without grid search 

demonstrated better performance. 

• Both KNN models exhibited improved results 

when grid search was employed. 

• M-KNN with CV = 0 and without grid search 

achieved the highest training and test accuracy of 

nearly 99%, which remained consistent even with 

CV = 5. 

• Notably, one of the cross-validation scores for M-

KNN with CV = 5 and grid search reached 100% 

In conclusion, M-KNN emerges as the preferred method 

for fault classification in power systems, given its 

superior performance. Further research can explore its 

application to real-world power system data and 

investigate additional machine learning techniques to 

enhance results. 
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