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This paper investigated the artificial neural network (ANN) modeling to forecast 

the one-hour ahead global and diffuse solar radiation using the observed data 

during 2019-2021 at a meteorological station in Bangkok, Thailand. Results from 

the statistical analysis portrayed the abundance of the tropical solar radiation 

and its large variation all year round. As a step to move advance the renewable 

energy use of the solar radiation at the location, the ANN forecasting models were 

proposed for all climatic conditions. The model input were the ambient 

temperature, solar elevation, and an insolation parameter namely normalized 

global solar radiation. The model performance was assessed by using the two 

statistic parameters: normalized mean bias error (nMBE), and normalized root 

mean square error (nRMSE). The results showed that the ANN models could 

forecast the global radiation with the nMBE of 1.79% and nRMSE of 26.20%. For 

the diffuse radiation forecast, the nMBE and nRMSE of the models were obtained 

at 7.78% and 36.21%, respectively. In order to demonstrate a benefit of the two 

developed ANN models, their forecasted horizontal data were employed to further 

predict the total solar radiation on vertical plane. Benchmarked with the smart 

persistence model, the developed ANN models possessed the higher forecasting 

accuracy for all weather conditions. 
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1 1. INTRODUCTION 

Globally, the building sector consumed 35% of the end-

use energy and contributed 39% of the emitted greenhouse 

gas (GHG) [1]. The net-zero and the ultra-low energy 

buildings are introduced as a promising solution to curb 

the raise of the sectoral energy consumption. On the one 

hand, the passive building design and the active energy 

efficient devices are implemented to the buildings to 

minimize the building energy demand. On the other hand, 

the photo-voltaic (PV) systems are installed on the 

building roofs and the facades for the on-site power 

generation. Due to the rapid decrease of the PV panel 

price, the PV installations are now growing, and result in 

increasing the solar power leading to the decarbonization 

in the electricity sector. Even though it was perceived that 

the solar power is environmentally friendly, its 

intermittent behavior could cause the adverse effect on the 

difficulty and complexity to the existing power plant 

operation and the grid management. The solar radiation 

also greatly influences the external heat gain of the 
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building air-conditioning, the indoor thermal comfort, and 

sequentially the optimal chiller’s plant control. Regarding 

the above issues, solar forecasting is a potential 

technology that helps managing the building systems, 

maximizing the solar power utilization, and stabilizing the 

instantaneous power in the grid system [2]. 

Routine measurement of the global solar radiation 

has been widely carried out in middle latitude countries 

[3]. In Southeast Asia, the measurements were found in 

Malaysia [4], Singapore [5], and Indonesia [6]. In 

Thailand, the global radiation has been measured for 

decades, and the records were used to develop Thailand’s 

solar radiation map [7]. Other than establishing the 

radiation databases, forecasting of the solar radiation 

using computational models for a future time horizon is 

essential to enhance balancing between the building 

energy demand and the solar power generation. Different 

forecasting methods were investigated and developed in 

prior research works and they could be categorized into 

four methods that are physical model, empirical model, 

statistical model, and machine learning model [8]. 

The physical models, so called the numeric weather 

prediction (NWP) models, employ dynamics and physics 

equations of the atmosphere to forecast future weather 

e.g., solar radiation, ambient temperature, and wind 

velocity. Mathiesen and Kleissl [9] developed a NWP 

model using the solar zenith and sky ratio as the model 

input to forecast the intraday solar radiation in the 

continental United States. The model offered a forecasting 

performance with a root mean square error (RMSE) of 85 

W/m2. Gamarro et al. [10] proposed an urban-specific 
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NWP model for the global radiation forecast in New 

York, USA. The proposed model had the coefficient of 

determination (R2) of 0.93, 0.61 and 0.39 for clear sky, 

partly cloudy sky, and overcast sky, respectively. A NWP 

model was introduced by Böök and Lindfors to forecast 

photovoltaic power production [11]. The model was 

accompanied with the site-specific adjustment to enhance 

the model’s accuracy. A major drawback of the physical 

method is the requirement of large computing resources 

[12]. Imperfect weather data in most locations limited the 

application of this method. 

Empirical model is a simple method of the solar 

forecast; however, accuracy of the empirical model is 

usually limited [13]. Ibrahim et al. [14] developed a 

regressed model to estimate the solar radiation using 

ambient air temperature in Malaysia. The model 

performance was relatively low with the R2 value of 

0.5585. The method also seemed suitable for data fitting 

rather than data forecasting. 

The statistical regression presents an alternative 

method of the solar forecast. Mbaye et al. [15] used the 

autoregressive moving average (ARMA) model to 

forecast the short term global radiation for Dakar-Fann, 

Senegal. This model was developed using the one-year 

data and could provide the prediction accuracy with 

RMSE of 0.629 W/m2 and R2 of 0.963. The mean absolute 

error (MAE) and the mean bias error (MBE) were 

obtained at 0.528 W/m2 and 0.012 W/m2, respectively. 

However, the limitation of statistical techniques is that 

they mostly used linear transformation, but the solar 

radiation relationship was nonlinear. 

Literature reported that the solar forecasting using 

machine learning outperformed other traditional methods 

[16]. Ağbulut et al. [17] assessed the forecasting 

performance of four Artificial Intelligence (AI) 

techniques: Artificial Neuron Network (ANN), Support 

Vector Machine (SVM), k-Nearest Neighbors (k-NN), and 

Deep Learning (DL) for the daily global radiation for four 

locations in Turkey. The model input was the daily 

minimum and maximum of the ambient temperature, 

cloud cover, extraterrestrial solar radiation, daylength, and 

solar radiation. The results exhibited that the ANN model 

outperformed other techniques. The DL method came the 

second, followed by the SVM and k-NN. For another 

study in Australia, Ghimire et al. [18] evaluated the ANN 

model performance against other models of support vector 

regression (SVR), Gaussian process machine learning 

(GPML), and genetic programming (GP) to forecast the 

daily global radiation. This work demonstrated the 

consistent results that the ANN model was superior to the 

others (SVR, GPML, and GP) and recommended the 

ANN model to be tested its performance in sub-tropical 

region. 

In France, Notton et al. [19] proposed the ANN 

prediction models of the hourly beam and the hourly 

global radiation for the time horizon of one-hour ahead up 

to six hours ahead at Bouzareah. The model input 

included the ten parameters of temperature and relative 

humidity of the ambient air, wind velocity and direction, 

water precipitation, sunshine duration, atmospheric 

pressure, declination, solar angle, and extraterrestrial solar 

radiation.  The analysis showed that the performance of 

proposed ANN models that gave in terms of the 

normalized root mean square error (nRMSE) were 22.57% 

for one-hour ahead prediction and 34.85% for six-hour 

ahead prediction. Another study of Notton et al. [20] 

applied the ANN models to forecast the total radiation on 

tilted surfaces at angle of 45° and 60° from the ground 

using the data input of the declination, time, solar zenith 

angle, extraterrestrial horizontal radiation, and global 

horizontal radiation. Again, the ANN model performed 

slightly better than the traditional method of empirical 

correlations. 

Premalatha and Valan Arasu [21] conducted a study 

of the ANN models to forecast the monthly average global 

radiation for five provinces in India using the 10-year 

meteorological records. The model inputs included the 

geometrical parameters of the latitude, longitude, and 

altitude of the locations, and the meteorological data of 

the mean values of the ambient air temperature, relative 

humidity, wind velocity, and station level pressure. The 

work investigated the effects of four back propagation 

algorithms, namely gradient descent (GD), Levenberg–

Marquardt (LM), Scaled conjugate gradient (SCG), and 

Resilient back propagation (RP) on the model forecasting 

accuracy. The results indicated the LM algorithm offered 

the best accuracy compared to the others (GD, SCG, and 

RP). Further, the study confirmed the forecasting accuracy 

of the ANN models relied on the number and the variety 

of trained data. 

Another study in India developed an ANN 

forecasting model for the diffuse solar radiation [22]. The 

data were acquired from 10 meteorological stations. The 

model input was the site’s location (i.e., latitude, 

longitude, and altitude), ambient temperature, relative 

humidity, rainfall amount, and wind velocity. The 

feedforward back-propagation algorithm was used in the 

model development. The model accuracy was assessed 

against existing parametric models using RMSE. The 

study revealed that the ANN model was more suitable for 

forecasting the monthly mean hourly value of diffuse solar 

radiation for Indian. The ANN model was more accurate 

and versatile than other well-published parametric models 

chosen for the evaluation. 

In Thailand, monthly mean global radiation was 

studied and estimated by an ANN model [23]. The model 

used the monthly values (maximum, minimum, and mean) 

of the ambient temperature, relative humidity, rainfall 

amount, and sunshine duration as the input. The model 

gave an RMSE of 0.0031 to 0.3632 MJ/m2/day and an 

MBE of  -0.0203 to 0.003 MJ/m2/day, indicating that the 

ANN model had the adequate accuracy of forecasting the 

monthly mean global radiation of Thailand. 

Most of the ANN modeling focused on forecasting 

the global radiation some of which limited to a particular 

condition of the clear sky [24]. It was observed that fewer 

studies were carried out for the diffuse component of 

which the prediction was more difficult due to the random 

moving clouds [22], [25]. The individual ANN models 

possessed different required input which were dependent 

on the available site’s data. The model outputs were also 

different with regard to the distinct forecasting time scale 

e.g., monthly, daily, hourly, or a very short time step of 5-

10 minutes. In real practices, many analyses of energy 
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systems such as energy conversion of the PV systems and 

of the thermal solar collectors, or the calculation of the 

external building cooling load would require the radiation 

data on tilted surfaces. In this case, the calculation would 

be more complicated due to which the surfaces were 

facing to only particular part of the sky and the actual 

luminance distribution over the sky vault was anisotropic. 

The transposition model is a traditional method to 

determine the total solar radiation on tilted surfaces. 

However, the procedure required the horizontal data of 

both the global and the diffuse solar radiation. By this 

context, adopting the existing ANN models to predict the 

tilted solar radiation was challenge due to the mismatch of 

the required model input and the output with the available 

data at the considered location. 

This paper worked on the ANN modelling to 

forecast the global and the diffuse horizontal solar 

radiation, and the use of the two forecasted data to predict 

the total radiation on a vertical surface. The 

characterization of the global and diffuse solar radiation of 

Bangkok using observations from a meteorological station 

was carried out at the first step. The ANN solar 

forecasting models of both global and diffuse horizontal 

radiation were then developed based on the validated 

available databases. A comparison of the developed model 

performance was made against some prior models of other 

author’s works. Lastly, a deployment of the developed 

ANN models together with a localized transposition 

model to predict the solar radiation on the south 

orientation was demonstrated. The study results showed 

that the prediction accuracy from the ANN model were 

more accurate that the smart persistent model. 

2.  SOLAR RADIATION CHARACTERISTICS 

2.1 Measuring Station 

The solar radiation data in this study were collected from 

a meteorological station erected on the roof deck of a 

seven-story building in the King Mongkut’s University of 

Technology, Thonburi (KMUTT). The station site was at 

Bang Khun Tien campus in the southern outskirts area of 

Bangkok metropolis, Thailand (latitude 13.58°N and 

longitude 100.11°E). The global solar radiation (Eeg) was 

measured at the station using a CM-11 pyranometer 

supplied by Kipp&Zonen. The diffuse horizontal radiation 

(Eed) was measured by another pyranometer placed on a 

sun tracker where a tracking ball automatically moved to 

shade the beam radiation from the sensor. A pyheliometer 

of the CHP1 model by Kipp&Zonen was equipped with 

the sun tracker to measure the beam normal radiation 

(Eeb). The radiation sensors were the secondary standard 

of the ISO 9060 and world meteorological organization 

(WMO) classification. According to the specification, the 

linearity of the sensors was 0.0% in the range of 0-500 

W/m2, and 0.7% at 1000 W/m2. The cosine error was less 

than 3% at 10 sun altitude. The temperature dependence 

was +1% over the ambient temperature range of 10-40C. 

The time respond was less than 5 second. The station also 

monitored the ambient condition including air temperature 

(Ta), relative humidity (RHa), and wind speed (Va). The 

temperature sensor had a measurement range of -32.9°C to 

60°C with the accuracy of +0.2°C at 20°C. The relative 

humidity sensor had the output scale of 0-100% with the 

temperature dependence of +0.05%RH/°C. 

 All measurements were recorded every one-minute 

interval by a data logger. In this study, the three-year data 

were obtained from January 2019 to December 2021. 

Figure 1 illustrates a photo of the station. As observed, the 

station was located in open space; no obstruction nearby 

the station affecting the measurements. 

 

 

 

 

Fig. 1. The meteorological station where the radiation data were compiled for this study. 

 

2.2 Data Quality Control 

The measured radiation data at the station were subject to 

a procedure of data quality assurance. The procedure 

comprised two tests carried out in series. For the first test, 

the measured radiation was checked and would be 

screened out if their values exceeded the extraterrestrial 

solar radiation. The remaining data were next evaluated by 

the second test of the data consistency check. As the 

station measured the global, diffuse horizontal and beam 

normal radiation, the consistency check could be 

performed by which the calculated values of the global 

radiation from the diffuse and beam components were to 

be compared to the corresponding global measurements. 

http://www.rericjournal.ait.ac.th/
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The difference of the two values should be limited within 

±10% of the measurement for the compliance with the 

second test. By this way, the spurious data from sensor 

malfunction and large calibration drift were expected to be 

eliminated by the second test. Only the data passing both 

tests were considered to be valid and could be used for the 

forecasting model development. 

2.3 Solar Radiation Availability 

Based on the validated data, statistical analysis was 

undertaken to characterize the solar radiation of Bangkok. 

Table 1 presents the numeric values of the hourly mean of 

the tropical global radiation for twelve calendar months. 

The hourly mean values of the diffuse horizontal radiation 

are given in Table 2. Their iso-contour plots are provided 

in Figures A.1 and A.2 in Appendix. At the header of 

Tables 1 and 2, M1 to M12 stand for January to December 

months. 

The first observation from the data in the tables was 

the small difference of the daylength in the June solstice 

compared to the December solstice. As the study’s site 

located in the tropics, the solar radiation amounts were 

high all year round. The seasonal variation could be 

noticed where the clear sky appeared most time in the dry 

period of November and December. The sky remained 

rather clear till April. The solar altitude angle reached 90 

degrees twice a year; in April and in August. With this 

regard, the global radiation was maximum during April, 

while the diffuse amount was peak in August, the rainy 

season. According to the records, the monthly peak value 

of the global radiation was 859 W/m2, and that of the 

diffuse horizontal was 419 W/m2. The diffuse component 

shared about half of the global radiation. In [7], the 

radiation database from a station located inland 40km 

north of Bangkok was presented. By comparing with our 

results, the measured global radiation from both sites were 

quite consistent in terms of their variation patterns and 

magnitudes. However, it was not the case of diffuse 

horizontal radiation where our values were higher. The 

high diffuse radiation observed at our station was possibly 

the presence of bright clouds in most daytime as the 

station itself was situated close to gulf of Thailand. The 

radiation distinction between the two stations advised 

more solar stations to be installed. This also encouraged 

the necessity of mathematical model development for 

solar forecasting. 

3. SOLAR RADIATION FORECAST 

3.1 Artificial Neural Network Model 

The next research task was to develop the forecasting 

model for the one-hour ahead solar radiation using the 

validated radiation database of southern Bangkok. This 

study adopted artificial neural network (ANN) as the 

forecasting technique due to its great prediction accuracy 

evidently reported by literature from different climates 

and localities. 

 

Table 1. Monthly means hourly values of the measured global radiation (W/m2). 

Time M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

1 - - - - - - - - - - - - 

2 - - - - - - - - - - - - 

3 - - - - - - - - - - - - 

4 - - - - - - - - - - - - 

5 - - - - - - - - - - - - 

6 - 1 6 18 36 37 24 16 17 15 10 2 

7 48 66 122 182 196 196 158 136 149 141 133 71 

8 238 250 300 354 374 390 330 308 317 319 326 265 

9 428 441 492 560 547 585 502 504 500 479 493 446 

10 587 632 668 713 693 700 652 620 622 605 599 577 

11 686 773 803 816 796 773 748 689 708 685 650 646 

12 719 818 859 852 815 780 762 705 728 638 655 661 

13 690 799 844 843 806 745 709 690 705 576 596 597 

14 585 699 755 707 683 656 602 593 591 448 495 489 

15 451 538 587 565 588 502 461 444 444 333 346 351 

16 269 346 372 365 401 327 309 283 252 167 168 187 

17 90 142 161 168 189 163 147 121 99 45 39 47 

18 3 11 16 17 25 26 28 16 6 - - - 

19 - - - - - - - - - - - - 

20 - - - - - - - - - - - - 

21 - - - - - - - - - - - - 

22 - - - - - - - - - - - - 

23 - - - - - - - - - - - - 

24 - - - - - - - - - - - - 
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Table 2. Monthly means hourly values of the measured diffuse horizontal radiation (W/m2). 

Time M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

1 - - - - - - - - - - - - 

2 - - - - - - - - - - - - 

3 - - - - - - - - - - - - 

4 - - - - - - - - - - - - 

5 - - - - - - - - - - - - 

6 - - 3 13 26 30 24 22 14 13 7 2 

7 35 48 78 107 116 117 105 109 104 99 82 52 

8 113 130 164 187 187 205 197 226 199 193 162 137 

9 197 191 242 245 226 273 279 346 279 270 222 209 

10 307 241 289 272 271 296 330 385 320 326 278 273 

11 233 248 303 294 287 330 370 413 349 340 310 262 

12 239 258 299 284 295 334 370 419 359 330 318 270 

13 252 253 277 258 284 325 355 399 339 297 294 281 

14 300 234 246 240 269 294 315 360 307 247 250 283 

15 262 201 205 227 230 248 259 296 259 203 198 222 

16 146 150 156 171 176 191 191 204 173 127 118 132 

17 63 78 89 100 106 111 110 100 79 40 34 41 

18 3 10 14 14 20 24 27 24 5 - - - 

19 - - - - - - - - - - - - 

20 - - - - - - - - - - - - 

21 - - - - - - - - - - - - 

22 - - - - - - - - - - - - 

23 - - - - - - - - - - - - 

24 - - - - - - - - - - - - 

 

 

 

Fig. 2. The ANN model structure. 

 

ANN is a biologically inspired computational model 

that constitutes a collection of hundred nodes of artificial 

neurons, each of which connected to others, that form a 

neural structure [26]. Figure 2 illustrates a diagram of a 

basic ANN model that the neurons are organized in layers 

of an input layer, multi hidden layers, and an output layer. 

At the first layer (the input layer), the neurons receive 

input signals of exogenous factors (called features), 

process them, and then transmit to the neurons in the 

consecutive layer (the hidden layer) connected to them. 

The transmitted signals are further transformed, and the 

final computations (called output) from the ANN model 

are delivered by the neurons of the output layer. 

The computational capability of an ANN model is 

determined by the network structure, neuron’s activation 

function, and learning rule. Equation 1 mathematically 

expresses the form of non-linear activation function that 

characterizes the artificial neurons: 

 

( )T

i xz f w x b= +                              (1) 

 

The variable
iz is the output from 

thi hidden neuron,

f is an activation function,
xw 1kR   is the input weight 

factor, x 1kR   is the input variable, and b R  is bias. 

http://www.rericjournal.ait.ac.th/
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Equation 2 expresses the function of the neurons in the 

output layer: 

 

( )T

yy f w z b= +                              (2) 

 

where y is the output variable, yw 1kR   is the output 

weight factor, and b R  is bias. 

In order to apply the ANN method for problem 

solving, the ANN model does not require knowledge of 

the input data sources, but it can gather the knowledge by 

diagnosing the patterns and correlations in data and 

learning (or are trained) through experience. During 

training process, a number of weights of inter-connections 

among neurons and thresholds are to be adjusted until the 

error in the prediction is minimized and the network 

reaches the acceptable accuracy level. 

3.2 Feature Selection 

Solar radiation is stochastic and are influenced by 

climatic factors. Solar altitude (αs) was commonly adopted 

as the input parameter by many physical and empirical 

radiation models [27]. Prior studies also indicated a large 

dependency of the radiation amount on sky prevalence 

[28]. In the solar research communities, several insolation 

indices were introduced for describing sky conditions. 

Since the global radiation was observed in most radiation 

stations, the clearness index (kt), a ratio of the global 

radiation to its corresponding solar extraterrestrial, was 

broadly used to parameterize the sky condition from 

overcast through partly cloudy to clear skies. Diffuse 

fraction (kd), defined as a ratio of the diffuse to global 

radiation, was another parameter adopted to differentiate 

cloudy sky from dark cloud to bright cloud. However, the 

diffuse radiation was less measured at solar radiation 

stations as compared to global radiation. Perez et al [29] 

recommended that the use of only one insolation 

parameter was not sufficient for the sky classification. 

Perez et al also introduced Perez’s clearness index to 

improve the use of global radiation to describe sky 

condition. 

Other than the use of radiation data, distribution 

patterns of luminance and radiance over the sky vault have 

also been used for the sky condition classification. In 

2003, the Commission Internationale de l'Éclairage (CIE) 

proposed the fifteen standard sky luminance distributions 

to classify apparent sky condition. A ratio of zenith 

luminance to diffuse horizontal illuminance (Lz/Edv) was 

introduced to parameterize the standard sky types [28]. 

Igawa et al. [30] also introduced an all-weather sky model 

that contained twenty patterns of the luminance 

distribution. The all-weather model employed an index 

namely normalized global solar radiation (Neg) for the 

distribution classification. Performance of the CIE model 

and the Igawa model to classify Thai’s sky were evaluated 

and the results showed the latter model could perform 

better. Also, it would imply that the nominalized global 

solar radiation well described the Thai’s sky condition, as 

such this study included it as the model input. Below, 

Equations (3) and (4) express the mathematical formula of 

the solar altitude angle and normalized global solar 

radiation: 

 

 1sin cos cos cos sin sins     −=   +       (3) 

 
where φ is latitude.  is declination angle, and  is hour 

angle. 

 

eg,mea

eg

eg,ref

E
N

E
=                         (4) 

 
5 4 3

eg,ref

2

36.78 188.00 375.95

306.95 15.47 0.83

s s s

s s

E   

 

= −  +  − 

+  +  +
  (5) 

 

In addition to the insolation indices mentioned 

above, numerous attempts of the ANN modeling included 

ambient temperature as input to forecast the solar 

radiation [27]. An advantage of inclusion ambient 

temperature (Ta) is due to its simplest available data 

source from meteorological stations. In this study, Table 3 

shows the observed data and derived data considered for 

the input parameters of the ANN modeling. 

 

Table 3. The available data at the meteorological station. 

Data Symbol Unit 

Observed data 

Global solar radiation Eeg W/m2 

Diffuse solar radiation Eed W/m2 

Beam solar radiation Eeb W/m2 

Ambient air temperature Ta °C 

Relative humidity RHa % 

Derived data 

Solar altitude angle αs degree 

Normalized global radiation  Neg  - 

 

The correlation coefficient is the statistic evaluator 

that can evaluate the relationship or association between 

two variables based on the covariance method [31]. To 

achieve an acceptable accuracy of the ANN solar 

modeling, selection of input parameters was performed by 

applying Pearson’s correlation to identify the greatest 

influence among the various insolation and climate 

parameters. Equation (6) expresses mathematically 
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Pearson's correlation: 

 

i i

2 2

i i

(x x) ( )

(x x) ( )
xy

y y
r

y y

−  −
=

−  −

 

 
  (6) 

 

where r is Pearson correlation coefficient. xi and yi are the 

variable samples. �̅� is the mean of values in x variables, 

and �̅� is the mean of values in y variables. 

Table 4 presents the evaluation results of the 

correlation among the input variables: Neg, αs, and Ta and 

the output variables: Eeg, and Eed. 

From the table, it could be observed a strong 

correlation between global radiation and solar altitude 

angle, providing correlation coefficient of 0.93. The 

correlation between the diffuse radiation and solar altitude 

angle was also as high as 0.82. When the correlations 

were evaluated between ambient temperature and the 

global and diffuse solar radiation, the values were also a 

strong correlation between 0.78 and 0.54. Moreover, 

normalized global radiation presented a moderate positive 

correlation between global solar radiation and diffuse 

solar radiation 0.73 and 0.57, respectively. 

Based on the above evaluation results, the features 

input selected for the ANN models were solar altitude 

angle, normalized global solar radiation, and ambient 

temperature to forecast the one-hour ahead global 

radiation and diffuse radiation. 

 
 

Table 4. Correlations analysis of the input-output variables of solar radiation forecasting modeling. 

Parameter Eeg  Eed 

Neg 0.73 0.57 

αs 0.93 0.82 

Ta 0.78 0.54 

 

 
Table 5. Hyperparameters with tuning range. 

Hyperparameter Value/method 

Epoch 500 

Hidden layer No. 1 [8, 16, 32, 48, 64, 128] 

Hidden layer No. 2 [8, 16, 32, 48, 64, 128] 

Hidden layer No. 3 [8, 16, 32, 48, 64, 128] 

Dropout [0.0, 0.2, 0.4] 

Learning rate [0.001, 0.002] 

Weight optimizer Adam 

 

 

3.3 Solar Modelling 

The one-minute records from the station were averaged to 

the ten-minute data for the ANN modeling of the global 

and diffuse solar radiation forecasting. The data were then 

split into three sets of which the first sixty percent were 

used for the model training, the next ten percent for the 

model validation, and the last thirty percent for the model 

performance assessment. 

Hyperparameter turning was carried out to optimize 

the model argument for maximizing the forecasting 

accuracy. The tuning approach could be categorized into 

manual tuning, grid search, and random search [32]. This 

work adopted the exhaustive grid search to try out all 

possible combinations of hyperparameter values to obtain 

the best set of values in the parameter search space. Table 

5 gives the list of the hyperparameters with their tuning 

range. 

In this study, Python with TensorFlow deep learning 

library version 2.4 was used as the programming tool to 

develop the forecasting model. Nonlinear problems 

required an algorithm or optimizer to determine the 

optimal solution by minimizing or maximizing the 

objective function. Among various optimizers, the 

stochastic gradient descent (SGD) was mostly used for 

black box models, but the solution converge was relatively 

slow as the SGD needed the forward and backward 

propagation for every subset of records. It was 

acknowledged that the Adaptive Gradient Algorithm 

(AdaGrad) worked well for sparse data, and the Root 

Mean Squared Propagation (RMSProp) for non-stationary 

data. The Adaptive moment estimation (Adam) combined 

advantages between AdaGrad and RMSProp, presenting 

one of the best stochastic optimizer techniques [33]. 

Therefore, this technique was adopted as the optimizer for 

weight optimization in the ANN modeling. 

From the TensorFlow implementation, the 

forecasting model contained an input layer with αs, Neg, 

and Ta as the input variables. The number of neurons were 

128, 64, and 32 in the first, second and third of the hidden 

layer, respectively. The activation function was the 

Rectified Linear Unit (ReLU). The loss function of mean 

square error (MSE) was used to train the ANN model. The 

learning rate was set at 0.001. In the training, the process 

would be terminated at 200 iterations or no significant 

change in the loss function.  

For the model evaluation, K-fold cross-validation 

was employed to determine the model skill on unseen 

data. This technique divided the data into folds, training 

the model in each fold, and then average the performance 
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of each evaluation fold. In [34], it was shown that the K 

value of ten was the most common. Therefore, we also 

utilized the 10-fold cross-validation technique. As our 

data were time series, forward chaining idea was 

employed – meaning that the future data of each fold 

could not be trained to forecast past values. The first 

(𝑘 − 1)th fold was used for training, while the 𝑘th fold was 

used for evaluation. Therefore, in 10-fold cross-validation, 

we had only nine folds result to be averaged (see Fig. 3). 

 

 
Fig. 3. Ten-folds cross validation with forward chaining. 

 

 

 
Fig. 4. Comparison of the measured global radiation with the forecasted values for the testing data. 

 

 

 
Fig. 5. Comparison of the measured diffuse radiation with the forecasted values for the testing data. 

 

 

3.4 Performance Assessment 

The developed ANN models were assessed their 

forecasting accuracy by using the test data set. The 

assessments were made by the standard parameters 

consisting of root mean squared error (RMSE), and mean 

bias error (MBE). The parameter definitions can be 

mathematically expressed by Equations (7)-(10): 

 

2

1

1
( )

n

i ii
RMSE p a

n =
= − ,           (7) 
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i

RMSE
nRMSE

a
= ,              (8) 

1

1
( )

n

i ii
MBE p a

n =
= − ,         (9) 

i

MBE
nMBE

a
= ,         (10) 

where
ip and

ia are the forecasted and the actual solar 

radiation value, respectively. 

The RMSE measures the spread of the forecasted 

values from the models around the actual values. The 

MBE indicates whether the models over-estimate (positive 

MBE value) or under-estimate (negative MBE value) the 

solar radiation for a long-term period. The RMSE and 

MBE are presented in the physical unit of W/m2. The 

nRMSE and nMBE are the normalized values of the RMSE 

and MBE with respect to the average of the actual 

measured values. 

• Smart persistence model 

The persistence model presents the simplest way to 

forecast the solar radiation by which the future value is 

postulated to be equal to the previous one, as expressed by 

Equation (11): 

 

t h tx x+ = .      (11) 

 

The variable x in the equation stands for the global or 

the diffuse solar radiation. The subscripts t and t+h are 

denoted as the present time and the future time of the 

forecasting. Due to the simplicity of the model principle, it 

is obvious that the accuracy of the persistence model 

quickly drops with increasing future time horizon. In this 

regard, the smart persistence (SP) model was introduced 

as the improved version of which the forecasting takes 

into account the diurnal solar cycle by using the clear-sky 

solar radiation profile over the day [35]. The function 

form of the SP model can be expressed as: 

 

,

,

+

+ = 
CS t h

t h t

CS t

x
x x

x
,      (12) 

 

where xCS,t+h and xCS,t are the profile solar radiation under 

the clear sky condition at the future time t+h and the 

present time t, respectively. 

In this study, the SP model was adopted as the 

reference for benchmarking the ANN model performance. 

However, it should be remarked that the clear-sky solar 

radiation profile was needed to establish for the model 

applicability. As mentioned in Section 3.2, the normalized 

global solar radiation (Neg) was an indicator to 

parameterize the sky condition. According to the 

indicator’s definition, the higher Neg value would 

represent the clearer sky condition. Such that, in the step 

of the solar profile establishment, the measured global and 

diffuse solar radiation corresponding to the Neg value 

greater than 0.9 were compiled from our database. The 

plot in Figure 6 shows the averaged values of the 

compiled radiation data with respect to the different five-

degree ranges of the solar altitude from 0-90°. The two 

trend lines of the averaged values were plotted and given 

as the global and the diffuse solar radiation profiles of the 

clear sky. 

 

 
Fig. 6. The clear-sky global and diffuse radiation profiles. 

 

 

Equations (13) and (14) express the empirical 

models of the clear-sky solar radiation profiles for the 

global (Eeg,CS) and the diffuse components (Eed,CS), 

respectively: 

 
3 2 2

, 0.0024 0.2313 10.206 ( 0.998)  = −  +  +  =eg CS S S SE R  

            (13) 

3 2 2

, 0.0006 0.0287 6.0893 ( 0.968)  = −  +  +  =ed CS S S SE R   

            (14) 

 

The coefficient of determination (R2) of the 

regression was given as shown. With the equations, when 

the forecasting time was known, the corresponding solar 

altitude and the clear-sky solar radiation profile could be 

determined, accordingly. 

• Global radiation 

Although the seasonal variation over year was not obvious 

in the tropical climate of the study site, the model 

performance was assessed for the two distinct periods that 

were the wet period during eight months from March to 
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October, and the dry period of four months from 

November to February. 

The upper section of Table 6 summarizes the 

statistics of the solar radiation for the two periods. As 

shown, the global radiation in the wet period had an 

average value of 498.67 W/m2 with the standard deviation 

of 301.95 W/m2. The global radiation in the dry period 

was marginally lower in terms of both its amount and 

variation as compared to the wet period. 

The SP model forecasted the one-hour ahead global 

radiation in the wet period with the RMSE value of 169.49 

W/m2, supposing the nRMSE value of 40.36%. The nMBE 

value was obtained at -18.75% (MBE=-78.74W/m2), 

indicating that the forecasted values from the SP model 

tended to underestimate the actual values. Considering the 

values of the nRMSE (39.32%) and the nMBE (-23.08%) 

for the dry period, the forecasting performance of the SP 

model was quite comparable to that of the wet period. 

Realizing the distinct sky condition between the wet 

period and the dry period as described in Section 2.3, the 

comparable nRMSE values of the two assessment periods 

implied that the solar global radiation profile of the clear 

sky was also applicable for other sky conditions. 

Table 6 shows that the ANN model had the nRMSE 

value of 26.90% and the nMBE value of 2.47% for the wet 

period and had the nRMSE value of 23.90% and the nMBE 

value of 0.11% for the dry period. When benchmarked 

with the SP model, the ANN model possessed the smaller 

nRMSE and nMBE values for all cases, deducing the 

superior forecasting performance of the ANN model. The 

significant improvement of the ANN model performance 

was due to the inclusion of the derived Neg indicator as the 

model input for sky parameterization. The forecasting 

performance of the ANN model was also observed to 

improve in case of the dry period.  

 

Table 6. Performance evaluation of the developed ANN forecasting models. 

Parameter 

 (W.m-2) 

Global radiation Diffuse radiation 

Wet period Dry period Whole year Wet period Dry period Whole year 

Measurement       

      Mean  498.67 443.73 481.08 234.07 189.42 219.78 

      Standard deviation  301.95 258.88 289.99 138.64 105.97 130.75 

Smart Persistence (SP) Model 

Prediction       

      Mean 419.93 360.50 400.91 184.18 148.43 172.74 

      Standard deviation 304.18 262.61 292.83 147.96 111.10 138.25 

Performance       

     MBE (W/m2) -78.74 -83.20 -80.16 -49.90 -40.99 -47.05 

     nMBE (%) -18.75 -23.08 -20.00 -27.09 -27.62 -27.24 

     RMSE (W/m2) 169.49 141.76 161.14 112.66 81.89 103.81 

     nRMSE (%) 40.36 39.32 40.19 61.17 55.17 60.1 

Artificial Neural Network (ANN) Model 

Prediction       

      Mean 511.31 444.22 489.83 254.23 204.50 238.31 

      Standard deviation 266.83 231.22 257.88 129.84 100.79 123.50 

Performance       

     MBE (W/m2) 12.65 0.49 8.75 20.16 15.08 18.53 

     nMBE (%) 2.47 0.11 1.79 7.93 7.37 7.78 

     RMSE (W/m2) 137.54 106.15 128.33 91.94 72.83 86.28 

     nRMSE (%) 26.90 23.90 26.20 36.16 35.61 36.21 

 

The aggregated results of the whole year assessment 

were also provided in Table 6. The RMSE and MBE of the 

ANN models were 128.33 W/m2 and 8.75 W/m2, 

corresponding to the nRMSE and nMBE values of 26.20% 

and 1.79%, respectively. 

In this study, the performance of the developed 

ANN models was also compared to some models selected 

from the literature. Benali et al. [35] developed the 

artificial neural network (ANN) model, and the random 

forest (RF) model to forecast the one-hour ahead global 

and diffuse solar radiation in France. The smart 

persistence (SP) model was used for the benchmarking. 

The study results of the model performance in terms of 

nRMSE were reproduced in Table 7. 

Voyant and Notton [36] used the global radiation 

data from Ajacco, Spain to develop the forecasting models 

using three techniques i.e. the autoregression (AR) model, 

the ANN model, and the stochastic persistence (StP) 

model. However, the scope of this work limited to only 

the global radiation modeling. For Alonso-Montesinos’s 

work [37], the forecasting model was developed based on 

the cloud motion vector (CMV) where the satellite images 

were employed for the model input to determine the cloud 

position in a considered time horizon. All the model 
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performance in Table 7 were evaluated on the annual 

basis. 

In summary, the results in Table 7 show that the 

author’s ANN model performance of the global radiation 

forecasting did well compared to those models of Benali 

[35], Voyant [36], where the nRMSE values were within a 

range of 19.65-26.90%. No explicit difference of the 

prediction performance could be observed among the SP, 

ANN, RF, and StP models. However, the Alonso-

Montesinos’ study presented a significant performance 

improvement of the forecasting model with the input of 

the cloud motion data. 

 

Table 7. Forecasting performance of the proposed models by other authors. 

Authors Model 
Normalized root means square error (nRMSE) 

Global radiation Diffuse radiation 

Benali et al. [35]  SP 21.67 63.64 

ANN 22.57 40.99 

RF 19.65 35.08 

Voyant and Notton [36] AR 19.54 na. 

ANN 19.29 na. 

StP 19.88 na. 

Alonso-Montesinos and Batlles [37] CMV 10.27 16.40 

 

• Diffuse radiation 

In Table 6, the diffuse horizontal radiation in the wet 

period was at an average of 234.07 W/m2, corresponding 

to 46.94% of the average global radiation. The standard 

deviation was calculated at 138.64 W/m2, indicating the 

large variation of the diffuse component. 

The MBE in Table 6 exhibits that the SP model 

largely underestimated the diffuse radiation by 49.9 W/m2 

for the wet period and 40.99 W/m2 for the dry period, 

corresponding to the nMBE value of around -27.0%. The 

evaluation also shows that the nRMSE value was 61.17% 

for the wet period and slightly improved to 55.17% for the 

dry period. The results seemed to be distinct from the 

previous case that the diffuse radiation profile of the clear 

sky was not applicable for partly cloudy and cloudy sky, 

hence resulting in the forecasting the worst in the wet 

period. Overall, the SP model performed worsen 

forecasting of the diffuse than the global radiation. 

For the developed ANN model, the forecasted 

diffuse radiation values were slightly higher than the 

actual values by 20.16 W/m2 in the wet period and by 

15.08 W/m2 in the dry period (nMBE of about 7.4%). The 

ANN model had the nRMSE value of 36.16% for the wet 

period and 35.61% for the dry period, indicating the 

forecasting accuracy did well compare for both periods. 

Benchmarking with the SP model, the ANN model 

possessed the better accuracy of forecasting the diffuse 

radiation. 

Comparing the forecasting performance of the 

diffuse radiation among the different models, the results in 

Table 7 indicate the author’s ANN model well compared 

to the models from Benali et al. study, but it did worse 

than the Alonso-Montesinos’ model. 

3.5 Application of the Forecasted Horizontal Data to 

Predict the Total Solar Radiation on Vertical 

Surface 

Incident solar radiation on building facades (Et) is the 

primary data for determining the building envelope heat 

gain. The incident radiation consists of the two basic 

components: the direct (Eb) and the diffuse (Ed) 

radiation. The amount of Eb can be determined by 

multiplying the beam normal radiation (Eeb) with its 

incidence angle on the surface. However, the calculation 

is more complicated for Ed, as the sky luminance 

distribution is anisotropic, and the facades are positioned 

to face only part of the sky hemisphere. In our prior study, 

a localized Perez’s model was proposed to determine the 

diffuse radiation from the sky on vertical surfaces for 

Bangkok. In the procedure, the two horizontal data of the 

global and the diffuse solar radiation are required as the 

input. The detailed description of the model was given in 

[7]. 
In order to demonstrate a benefit of the developed 

ANN models, the paired values of the forecasted 

horizontal data from the models were used to further 

predict the total radiation on the vertical facades with the 

assistance of the Perez’s transposition model. The 

calculated results were compared to the real measurement 

from the station and benchmarked with that obtained from 

the same calculation procedure but using the forecasted 

data from the SP model.  

The solar radiation on the south orientation was 

chosen as the study case. Figure 7 shows the plots of the 

measured radiation at the station for seven consecutive 

days during 4-10 December 2021. The plots were also 

superimposed by the forecasted values from the ANN 

models and the SP models. 

As the observation was made in the dry period that 

the sky was clear for most daytime and the sun traveled 

due south with low elevation angle, the total radiation on 

the south reached 800 W/m2, as illustrated in Figure 7(a). 

However, the stochastic variation of the diffuse radiation 

in Figure 7(b) indicated the presence of moving clouds 

which was more pronounced on the day 2, 3, 6, and 7 of 

the observation. The total radiation of the south 

orientation is given in Figure 7(c) and the influence of the 

clouds was obvious. 
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(a) Forecasted global radiation. 

 

 

 

(b) Forecasted diffuse horizontal radiation. 

 

 

 

(c) Forecasted total radiation on south orientation. 

 
Fig. 7. Forecasting of the total solar radiation on south orientation during 4-10 December 2021. 

 

Table 8 summarizes the experimental results of 

forecasting the total radiation on the south using the 

horizontal data from the ANN models. For the seven-day 

observation, the mean value of the total radiation was 

424.00W/m2. The standard deviation was 151.98W/m2. 

The forecast using the data from the SP model presented a 

large error with the nMBE of -24.96% and nRMSE of 

37.97%. The results in the table show that the ANN model 

could give the lower values of both nMBE and nRMSE, 

indicating the better forecasting accuracy of the ANN 

model. 

For the analysis using the whole data, the mean value 

of the total radiation on the south reduced to 190.74W/m2, 

as the data included all sky conditions (not only clear sky) 

and the period that the sun traveled due north so only the 

diffuse radiation presented on the south façade. It was 

again that the ANN model could perform better than the 

SP model. This was resulted from that the ANN model 

forecasted the diffuse horizontal radiation more accurately 

than the SP model. 

 

4. CONCLUSION 

The tropical global and diffuse solar radiation of Bangkok 

was high and largely variable. The monthly average 

hourly mean value of the global radiation was higher than 

700 W/m2 during noon throughout the wet period from 

March to October. The diffuse radiation was above 350 

W/m2 in the raining season (August-October). Due to the 

presence of clouds for most time over years, the diffuse 

radiation shared up to almost 50% of the global solar 

radiation. As observed in the iso-contour plots in the 

appendix, although the seasonal changes were not clearly 

distinct in the study location, its influence on the solar 

radiation variation could be noticed. 

The artificial neural network (ANN) models were 

developed for the global and diffuse solar radiation 

forecasting for one-hour ahead. Based on the correlation 

testing, the three parameters of the solar altitude angle, the 

normalized global radiation index and the ambient air 

temperature were chosen as the model’s input. 

The proposed ANN model performance was assessed 

by using the two common statistic parameters. The results 
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showed that the ANN models could forecast the global 

radiation with the nMBE of 1.79% (MBE=8.75 W/m2) and 

nRMSE of 26.20% (RMSE=128.33 W/m2). For the diffuse 

radiation forecasting, the nMBE and nRMSE were 

assessed at 7.78% and 36.21%, respectively. The models 

forecasted the global radiation more accurately than the 

diffuse radiation. Our developed model performance was 

also compared with the selected models of other authors. 

Although the solar radiation in the tropics were largely 

variant over year, the forecasting performance was found 

to be well compared. 

 
Table 8. Experimental results of forecasting the total solar radiation on the south using the ANN models. 

Parameter (W.m-2) 
Total solar radiation 

7-day observation Whole data 

Measurement  

424.00 

151.98 

 

      Mean  190.74 

      Standard deviation  147.80 

Smart Persistence (SP) Model 

Prediction  

339.32 

195.55 

 

      Mean 151.69 

      Standard deviation 138.33 

Performance  

-84.69 

-24.96 

128.84 

37.97 

 

     MBE (W/m2) -39.05 

     nMBE (%) -25.75 

     RMSE (W/m2) 80.67 

     nRMSE (%) 53.18 

Artificial Neural Network (ANN) Model 

Prediction  

403.99 

134.89 

 

      Mean 207.62 

      Standard deviation 141.68 

Performance  

-20.02 

-4.96 

73.68 

18.24 

 

     MBE (W/m2) 16.88 

     nMBE (%) 8.13 

     RMSE (W/m2) 70.81 

     nRMSE (%) 34.11 

 

This study demonstrated the deployment of the 

developed ANN models together with the localized 

Perez’s transposition model to predict the solar radiation 

on the vertical surfaces. The evaluation showed that the 

prediction for the south-facing plane could be achieved 

with the nMBE of 8.13% and nRMSE of 34.11%. The 

developed ANN models performed better prediction than 

the smart persistence model for all cases. 

For future work, the potential improvement of the 

model performance could be suggested by expanding the 

range of the hyperparameter turning. The hybrid of 

different artificial intelligence techniques can offer the 

enhancement of the forecasting accuracy. 

NOMENCLATURE 

egE    global solar radiation 

edE    diffuse horizontal radiation 

ebE    beam normal radiation 

aT    air dry-bulb temperature 

aRH   air relative humidity 

aV    wind velocity 

iz    output from hidden neuron 

xw    input weight 

b    bias 

y    output 

yw    output weight 

s    solar altitude angle 

tk    clearness index 

dk    diffuse fraction 

zL    zenith luminance 

dvE    diffuse horizontal illuminance 

egN    normalized global solar radiation 

    latitude 

    declination angle 

    hour angle 

,eg meaE   measurement global solar radiation 

,eg refE   reference global solar radiation 

,cs tx  profile radiation under the clear sky 

condition at the present time t  

,cs t hx +   profile radiation under the clear sky 

condition at the future time t h+  

,eg CSE   clear-sky global radiation profile 

,ed CSE   clear-sky diffuse radiation profile 

tE     incident solar radiation on tilted plane 
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bE     direct radiation on tilted plane 

dE     diffuse radiation on tilted plane 
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APPENDIX 

Table A.1. Monthly standard deviations of the measured global radiation (W/m2). 

Time M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

1 - - - - - - - - - - - - 

2 - - - - - - - - - - - - 

3 - - - - - - - - - - - - 

4 - - - - - - - - - - - - 

5 - - - - - - - - - - - - 

6 - 2 10 25 39 37 28 21 23 21 15 6 

7 43 47 68 79 94 93 90 70 88 87 74 52 

8 92 79 106 126 155 133 147 123 146 144 123 117 

9 125 114 149 187 217 161 185 162 205 195 158 152 

10 135 107 170 216 234 199 216 212 239 236 190 167 

11 171 91 169 226 236 210 223 230 254 260 212 190 

12 187 101 146 243 255 241 236 229 256 278 217 193 

13 179 107 137 235 220 230 241 225 245 284 217 186 

14 163 115 125 232 212 210 231 218 216 254 182 154 

15 137 109 118 181 163 198 200 193 175 185 137 125 

16 98 84 106 136 123 153 150 144 122 101 82 81 

17 57 63 75 86 87 85 85 78 66 44 37 38 

18 7 16 22 24 32 33 31 23 11 2 0 1 

19 - - - - - - - - - - - - 

20 - - - - - - - - - - - - 

21 - - - - - - - - - - - - 

22 - - - - - - - - - - - - 

23 - - - - - - - - - - - - 

24 - - - - - - - - - - - - 
 

 

Table A.2 Monthly standard deviations of the measured diffuse horizontal radiation (W/m2). 

Time M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 

1 - - - - - - - - - - - - 

2 - - - - - - - - - - - - 

3 - - - - - - - - - - - - 

4 - - - - - - - - - - - - 

5 - - - - - - - - - - - - 

6 - 2 7 19 28 28 29 42 18 17 12 5 

7 29 32 35 41 50 52 46 49 49 45 38 32 

8 46 41 56 67 75 85 76 82 82 75 62 59 

9 121 61 84 101 101 147 110 129 133 104 93 124 

10 197 88 93 112 117 153 140 148 143 129 113 167 

11 126 84 95 130 131 174 153 141 152 127 118 133 

12 118 89 97 137 147 167 160 141 151 121 110 120 

13 131 85 97 131 124 155 150 139 142 125 101 122 

14 184 79 81 116 124 150 134 144 127 109 82 137 

15 160 67 65 105 97 125 111 135 104 89 70 107 

16 73 44 48 71 66 83 78 99 72 62 43 58 

17 35 27 32 44 44 46 51 58 45 35 30 30 

18 6 21 17 18 23 26 28 51 10 2 0 1 

19 - - - - - - - - - - - - 

20 - - - - - - - - - - - - 

21 - - - - - - - - - - - - 

22 - - - - - - - - - - - - 

23 - - - - - - - - - - - - 

24 - - - - - - - - - - - - 
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Fig. A.1. Contour plot of the global radiation. 

  

Fig. A.2 Contour plot of the diffuse radiation. 

 

Fig. A.3 Contour plot of the beam radiation. 
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