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The optimal power flow (OPF) has been widely used in power system operation 

and planning of power systems. Recently, many advanced optimization methods 

have been used to solve the OPF problem with different objectives. However, 

traditional OPF cannot effectively handle multiple objectives, at the same time. 

Therefore, the main contribution of this is to propose the fuzzy multi-objective 

optimal power flow (FMOPF) using the stochastic search optimization technique. 

In the proposed method, particle swarm optimization (PSO) is used to solve the 

FMOPF by incorporating to minimizing the objective function’s fuzzy satisfaction 

function, including the total system cost, active power loss, and voltage magnitude 

deviation. The proposed FMOPF is applied to solve the optimal condition for the 

IEEE 30-bus test system for verification. The simulation results showed that the 

proposed FMOPF using the PSO method could potentially and effectively 

determine the best solution for single-objective OPF compared to existing 

methods. From the results, the proposed method gave the compromise solution 

among different objectives in the proposed FMOPF in a fuzzy manner by 

comparing the results obtained with the existing method under the same system 

data, and control variables. 
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1.  INTRODUCTION 

In power system operation, the optimal operation of 

system equipment for economic, security, quality of 

supply, and environmental concern is the most required. 

The vital tool for power system day-to-day operation 

and planning is optimal power flow (OPF). The OPF 

was first introduced by Carpentier [1], to operate cost 

minimization. Nowadays, the OPF has been constantly 

developed with several objectives and security 

constraints including solving methods. The OPF is a 

complex non-convex optimization problem [2] and [3], 

for determining the optimal solution of a power system 

considering security constraints. In the OPF formulation, 

the best operating condition of the power system is 

determined depending on the desired objectives, for 

example, total system cost minimization (TSCM), active 

power loss minimization (APLM), and voltage 

magnitude deviation minimization (VMDM). Therefore, 

the best suitable values of control variables are the 

outputs of OPF. Meanwhile, the power balance and 

system operating constraints are needed to be met in the 

OPF problem [4]. The dependent variable obtained and 

handled by OPF is the generators’ reactive power, 

voltage magnitudes at load buses, and the MVA flow at 

each branch [5]. 
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 In the past decades, non-deterministic search 

optimization techniques have been continuously 

developed to solve complex OPF problems, for 

example, genetic algorithm (GA) in [6] and tabu search 

(TS) in [7]. Meanwhile, the recent stochastic 

optimization methods have also been continuously 

proposed. The black-hole-based optimization (BHBO) 

was proposed to solve the OPF problem in [8]. 

Meanwhile, the authors in [9] used the meta-heuristic 

algorithm to solve the OPF with SVCs consideration. 

An enhanced adaptive differential evolution (JADE) 

with a self-adaptive penalty constraint handling 

technique (EJADE-SP) is proposed to obtain the OPF 

problem in [10]. Among the modern stochastic 

optimization techniques, particle swarm optimization 

(PSO) is one of the most widely used methods, [11] to 

[13]. Meanwhile, the improved PSO algorithm, 

stochastic weight trade-off PSO (SWT-PSO), is applied 

to solve the OPF problem in [14].  However, due to the 

complex behavior that difficult to find global solutions 

for OPF, further development to get a better solution is 

still beneficial.  

 Moreover, the practical operation of a power 

system is commonly included in multiple objectives. 

The best solution for some objectives may lead to a bad 

solution for some other objectives. Therefore, the multi-

objective OPF has been proposed in several kinds of 

research [15] to [18]. When the optimization problem 

has two or more objective functions, the problems are 

called multi-objective optimization problems (MOOP) 

[16]. Generally, MOOP must be optimized for more 

than one objective function at the same time. There are 
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many methods proposed for solving MOOP. The 

classical approach for solving such problems focuses on 

aligning multi-objective to a single objective. The 

MOOP can be defined as conflicting objectives by the 

Pareto optimal method or a fuzzy method [17] to [20] 

for extracting the best compromise solution obtained 

from the Pareto front or fuzzy trade-off. Furthermore, 

various methods can solve the MOOP. For example, the 

authors in [21] used Mayfly and Aquila (MA) Optimizer 

algorithms to solve MOOP considering Pareto front 

solutions. Also, the multi-objective differential 

evolution (MDE) solution aims to focus only on the 

required parts of the Pareto set was proposed in [22] In 

addition, self-adaptive particle swarm optimization 

(SPSO)-differential evolution (DE) algorithms [23] and 

manta ray foraging optimization (MRFO) [24] can solve 

the problem of MOOP as well. Nevertheless, 

compromised trade-off among multiple objectives may 

be preferred by the system operator. 

 Therefore, this paper proposes the fuzzy multi-

objective OPF (FMOPF) that is solved by PSO. In the 

proposed method, the OPF problem is formulated to 

MOOP. The objective functions include the TSCM, 

APLM, and VMDM. Several case studies were 

conducted with different combinations of the three 

objectives mentioned above. The standard and modified 

IEEE 30-bus test systems were used to test the proposed 

OPF problem formulation using PSO for individual 

single-objective TSCM, APLM, and VMDM. In 

addition, the FMOPF for trade-off among TSCM, 

APLM, and VMDM has also been investigated. 

 In this paper, the problem formulation is discussed 

in Section 2. Next, the strategy for objective functions 

fuzzification is offered in Section 3. Furthermore, the 

simulation result and discussion are given in Section 4. 

The conclusion is addressed in Section 5. Finally, the 

nomenclature is given at the end part. 

2. PROBLEM FORMULATION 

Mathematically, the OPF problem can be represented as 

follow:  

Minimize ( , , , ) , G G CP V T Xf
 (1) 

Subject to: ( , , , ) 0=G G CP V T Xg
 

(2) 

 ( , , , ) 0G G CP V T Xh
 (3) 

In Equation 1, matrix f represents the set of 

objective functions that are to be minimized. 

Meanwhile, matrices g and h, in Equations 2 and 3, are 

the sets of equality and inequality constraints required. 

Where PG is the matrix of active power generation 

excluding slack bus generation as,  

( )2 3 1 1
[ , ,..., ]  .G G GNG NG
P P P

 −
=GP

 
(4) 

|VG| is the matrix of voltage magnitude of generator 

bus, 

1 2 1[ , ..., ]  .G G GNG NGV V V =GV
 

(5) 

T is the matrix of transformer tap-changing, 

1 1[ ,..., ]  .NT NTT T =T
 (6) 

XC is the matrix of SVCs reactance values, 

1 1[ ,..., ]  .C CNC NCX X =CX
 (7) 

2.1 Objective Function 

In this article, TSCM, APLM, and VMDM objective 

functions are considered. 

2.1.1 Total system cost minimization (TSCM) 

The TSCM problem can be represented as below: 

min ( , , , ) ,TSC G G CP V T X
 (8) 

where,   

2

1

( , , , ) ( ) .
NG

i i Gi i Gi

i

TSC a b P c P
=

= + +G G CP V T X

 
(9) 

2.1.2 Active power loss minimization (APLM) 

The APLM is to reduce the transmission losses as: 

min ( , , , ) ,APL G G CP V T X
 

(10) 

where,   

2 2

,

1

( , , , ) V V 2V V cos  .
NTL

L ij i j i j ij

L

APL g 
=

 = + − G G CP V T X

 
(11) 

2.1.3 Voltage magnitude deviation minimization 

(VMDM) 

The VMDM is to keep the voltage quality of a power 

system, can be formulated as: 

min ( , , , ),VMD G G CP V T X
 

(12) 

where,   

1

( , , , ) .
NL

ref

i i

i

VMD V V
=

= −G G CP V T X

 
(13) 

Vi
ref

 is generally considered as 1 p.u. 

2.1.4 FMOPF 

The FMOPF problem is simultaneously solved for the 

optimal solution of TSCM, APLM, and VMDM, based 

on a fuzzy trade-off concept.  

2.2 System Constraints 

The common OPF constraints including power balance 

and operation are taken into consideration in the 

proposed method. 

2.2.1 Power balance constraints 

The power balance constraint can be represented by the 

Newton-Raphson power flow equations. These 

constraints are handled by solving the power flow 

solution. Therefore, a feasible solution can be ensured. 

In addition, the other dependent variables are obtained 

from this process. The power balance constraints can be 

described as: 

http://www.rericjournal.ait.ac.th/
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( ) ( )
1

cos sin , 
NB

Gi Di ij i j ij ij i j ij

j

P P G V V B V V 
=

 − = +
 

 
(14) 

( ) ( )
1

sin cos ,
NB

Gi Di ij i j ij ij i j ij

j

Q Q G V V B V V 
=

 − = −
 

 
(15) 

where, i=1,…,NB. 

2.2.2 System operating limit constraints 

The system operating constraints are as follows. 

(1) Generator constraints are, 

- The limit on generators’ voltage magnitude, 

| | | | | |  ,  L U

Gi Gi GiV V V 
 

(16) 

- The generators’ real and reactive power 

operating limit, 

  L U

Gi Gi GiP P P 
 

(17) 

  L U

Gi Gi GiQ Q Q 
, and (18) 

i = 1,…,NG. 

(2) Transformer tap-changing limit,  

  , 1,...,  L U

i i iT T T i NT  =
 

(19) 

(3) The SVCs setting limits, 

  , 1,...,  L U

ci ci ciQ Q Q i NC  =
 

(20) 

(4) Network operating limit constraints include,  

- The limit on bus voltage magnitude, 

| | | | | |   , 1,...,  L U

Li Li LiV V V i NPQ  =
 (21) 

- The transmission lines and transformers 

loading limit, 

| |   , 1,...,  U

Li LiS S i NL =
 

(22) 

3. STRATEGY FOR OBJECTIVE FUNCTIONS 

FUZZIFICATION 

This section illustrates a multi-objective optimization 

technique using a fuzzy satisfactory approach which is 

proposed by Zimmermann [25]. With this approach, the 

optimization of MOOP can be solved by compromising 

trade-offs among all objectives. The MOOP is compared 

to a single-objective optimization problem by 

considering the solution at the edge of the fuzzy 

satisfactory functions, in this paper. The proposed 

FMOPF using PSO is categorized into: 

(1) TSCM in Equation 9, 

(2) APLM in Equation 11, and 

(3) VMDM in Equation 13. 

 The objective functions in Equations 9 to 13 are 

used to formulate the fuzzy satisfactory functions (FSF) 

as shown in Figures 1 to 3.  

 In the fuzzification process, the MOOP is 

converted into FSF, µTSC, µAPL, and µVMD, as shown in 

Figures 1 to 3, respectively. This process defines a FSFs 

associated with each objective because high value of 

each objective is given by a low FSF value. In the same 

manner, the best value for each objective is obtained by 

optimizing a single-objective. Meanwhile, the maximum 

objective value is determined by minimizing other 

objective functions.  

 

 

  

Fig. 1. FSF of TSC. Fig. 2. FSF of APL. 

 

Fig. 3. FSF of VMD. 

 

http://www.rericjournal.ait.ac.th/


 Muangkhiew P. and K. Chayakulkheeree / International Energy Journal 22 (September 2022) 281 – 290 

www.rericjournal.ait.ac.th 

284 

The FSF of the individual objective functions can 

be represented by Equations 23 to 25, for TSCM, 

APLM, and VMDM, respectively. A FSF can take any 

value in [0,1]. The FSF value of 1 is assigned to the 

minimum value for each objective. When the other 

objective provides that objective value is greater than 

the minimum value, the FSF is decreased to zero. Lastly, 

the multi-objective problem can be formulated as fuzzy 

maximization problem as Equation 26. 

min

max min
min max

max

max min

max

1 , for 

1

, for 

0 , for 

TSC

TSC TSC

TSC
TSC TSC

TSC TSC TSC
TSC

TSC TSC

TSC TSC






−
 
 −

=  
+

−
   

(23) 

min

max min
min max

max

max min

max

1 , for 

1

, for A

0 , for A

APL

RPL RPL

APL
APL APL

PL APL APL
APL

APL APL

PL APL






−
 
 −

=  
+

−
   

(24) 

min

max min
min max

max

max min

max

1 , for 

1

, for 

0 , for 

VMD

VMD VMD

VMD
VMD VMD

VMD VMD VMD
VMD

VMD VMD

VMD VMD






−
 
 −

=  
+

−
   

(25) 

 Maximize  min , ,T TSC APL VMD   =
 

(26) 

3.1 PSO based FMOPF 

The PSO was proposed in 1995 [26], as one of the bio-

inspired algorithms and it is a simple one to search for 

an optimal search in the solution space, like the motion 

of bird flocks. In the proposed PSO based FMOPF, the 

individual single-object for TSCM, APLM, and VMDM 

are solved, in order to obtain the FSF of TSCM, APLM, 

and VMDM.  

The PSO population i for single-objective is 

[ ,  ,  ,  ].=i Gi Gi i Cip P V T X
 (27) 

Then, velocity of particle m can be computed by, 

1

1 1 2 2( ) ( ) .t t t t t t

m m m i mv wv c r pbest c r gbest+ = + − + −p p
 (28) 

The particle’s position is, then, updated as, 

1 1  .t t t

m m mv+ += +p p
 

(29) 

The standard parameters of PSO are used for 

investigation of this work.  Therefore, w is reduced from 

0.9 at the first iteration to 0.4 at the maximum iteration, 

and c1 and c2 are 2.00. The proposed, the individual 

objective, computational procedure is shown in Figure 

4. For FMOPF, the FSF is used to obtain µT. The 

computational can be illustrated as Figure 5. 

 

  

Fig. 4. Flow chart of the individual objective. Fig. 5. Flow chart of the FMOPF using PSO. 

 

4. SIMULATION RESULT AND DISCUSSION 

In this section, the TSCM, APLM, VMDM are studied, 

which were tested on the standard and the modified 

IEEE 30-bus test systems, as shown in Figures 6 and 7, 

respectively. The system data is taken from [27] and 

[28]. The proposed FMOPF has been investigated in 

three cases study as follows. 

4.1 Base Case for TSCM with Standard IEEE 30-bus 

Test System 

For the base case, the control variables are as shown in 

Table 1. This case study investigates the performance of 

the proposed PSO-based OPF by comparing it to the 

widely-used standard case in [27]. 

Obtain power flow input data set , set k=1

Formulation PSO population  

Start

Perform power flow for all populations 

and compute the objective value

Any constraint violations for population m 

Add the penalty factor to the objective function for 
population m

Compute individual objective function 

Get pbestm
t and gbestt

Determine vm
t+1

Update pm
t+1

k = maximum iteration?

Obtain output of objective fi  

End

No

Yes

No

Yes

k=k+1

Define the Fuzzy satisfactory function µi 

for each objective (Fuzzification)

Start

Get the output from individual objectives minimization, 

set k = 1

Perform power flow for all populations 
and compute µT

Any constraint violations for population m 

Add the penalty factor to the objective value                     
for population m

Get pbestm
t  and gbestt

Determine vm
t+1

Update pm
t+1

k = maximum iteration?

End

Yes

Yes

No

No

k=k+1

http://www.rericjournal.ait.ac.th/


Muangkhiew P. and K. Chayakulkheeree / International Energy Journal 22 (September 2022) 281 – 290   

www.rericjournal.ait.ac.th  

285 

Table 2 shows the results obtained from the 

convention deterministic method and the proposed 

method. The results showed that the proposed method 

can determine a lower TSC than the conventional 

deterministic method. Therefore, the proposed PSO-

based OPF problem formulation can successfully 

minimize the TSC of the power system to satisfy system 

operating constraints. Further comparison result with the 

modified IEEE 30-bus test system is illustrated 

compared to more recent stochastic methods in Section 

4.2. 
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Fig. 6. The IEEE 30 buses system [27]. Fig. 7. The modified IEEE 30-bus test system [28]. 

 

 
Table 1. The control variables of standard case. 

Control Variables Number At bus number 

Real power generations 5 2, 5, 8, 11, 13 

Generators’ voltage magnitudes 6 1 (slack), 2, 5, 8, 11, 13 

Transformer tap-changes 4 6-9, 6-10, 4-12, 27-28 

SVCs’ setting values 2 10, 24 

 

 
Table 2. Comparison results of the IEEE 30-bus test system for TSCM. 

Control Variables Deterministic method Proposed method 

Power Generation (PGi) at Bus (MW) 

2 48.84 48.63 

5 21.51 21.30 

8 22.15 21.18 

11 12.14 11.94 

13 12.00 12.00 

Generator Voltage (|Vi|) Magnitude at Bus (p.u.) 

1 1.05 1.10 

2 1.04 1.09 

5 1.01 1.06 

8 1.02 1.07 

11 1.09 1.10 

13 1.09 1.10 

Transformer Tap-Changing (Ti-j) between Buses 

6-9 1.00 1.04 

6-10 0.96 0.94 

4-12 1.00 0.99 

28-27 0.94 0.96 

SVC Reactance Values (XCi) at Bus (p.u.) 

10 -5.26 -5.00 

24 -25.00 -20.00 

TSC ($/h.) 802.400 799.430 

http://www.rericjournal.ait.ac.th/
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4.2 The Single-Objective with Modified IEEE 30-bus 

Test System 

The control variables of the modified IEEE 30-bus test 

system are shown in Table 3. The TSCM sing objective 

solution has been carried out and investigated compared 

to the enhanced genetic algorithm (EGA) method [29], 

BHBO method [30], and enhanced genetic algorithm-

decoupled quadratic load flow (EGA-DQLF) method 

[31], as shown in Table 4. 

From Table 4, the EGA method resulted in the highest 

TSC of 802.06 $/h. Meanwhile, the BHBO and EGA-

DQLF methods can provide the lower TSC at 799.922 

and 799.56 $/h, respectively. However, the TSC 

obtained by the proposed problem formulation is the 

lowest among all other methods. Therefore, the 

proposed method is potentially competitive with other 

existing stochastic methods for TSC minimization. 

 

Table 3. The control variables of standard case. 

Control Variables Number At bus number 

Real power generations 5 2, 5, 8, 11, 13 

Generators’ voltage magnitudes 6 1 (slack), 2, 5, 8, 11, 13 

Transformer tap-changes 4 6-9, 6-10, 4-12, 27-28 

SVCs’ setting values 9 10, 12, 15, 17, 20, 21, 22, 23, 24 

 

 

Table 4. Comparison results of the modified IEEE 30-bus test system for TSCM. 

Control Variables EGA [29] BHBO [30] EGA-DQLF [31] Proposed method 

Power Generation (PGi) at Bus (MW) 

2 48.75 48.35 48.11 48.84 

5 21.44 21.53 21.28 21.36 

8 21.95 20.02 20.93 20.93 

11 12.42 13.42 12.50 11.91 

13 12.02 13.41 12.00 12.00 

Generator Voltage (|Vi|) Magnitude at Bus (p.u.) 

1 1.05 1.10 1.10 1.10 

2 1.04 1.08 1.08 1.09 

5 1.01 1.05 1.05 1.06 

8 1.01 1.06 1.06 1.07 

11 1.08 1.08 1.10 1.04 

13 1.07 1.07 1.09 1.07 

Transformer Tap-Changing (Ti-j) between Buses 

6-9 1.01 1.02 0.95 1.08 

6-10 0.95 1.00 1.04 0.99 

4-12 1.00 1.03 1.00 1.05 

28-27 0.96 1.00 0.98 1.04 

SVC Reactance Values (XCi) at Bus (p.u.) 

10 -20.00 -33.23 -25.00 -18.02 

12 -20.00 -33.69 -50.00 -29.56 

15 -33.33 -28.94 -20.00 -34.91 

17 -20.00 -28.16 -20.00 -15.66 

20 -20.00 -40.84 -50.00 -45.00 

21 -20.00 -36.03 -25.00 -9.42 

23 -25.00 -35.74 -25.00 -44.99 

24 -20.00 -29.52 -33.33 -15.65 

29 -33.33 -37.21 -100.00 -44.99 

TSC($/h.) 802.060 799.922 799.560 799.3862 

 

4.3 The FMOPF with Modified IEEE 30-bus Test 

System 

The proposed FMOPF for trading-off among TSCM, 

APLM, and VMDM had been investigated in this case 

study. This case study was done by the input data as in 

Table 3. To further verify the reliability of the proposed 

method, 20 trials for TSCM, APLM, VMDM, and µT of 

FMOPF have been performed, as shown in Table 5. It is 

seen that the results from several trials guarantee the 
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reliability to get the feasible solution of the proposed 

method. Figures 8 to 11 showed the convergence 

behavior of the TSCM, APLM, VMDM, and µT of 

FMOPF, respectively. µT is the maximum FSF value 

among the minimum values of µTSC, µAPL, and µVMD. 

Note that the minimization of -µT is solved for µT 

maximization. 

 
Table 5. The results from 20 trials. 

  Best Avg. Worst 

TSCM ($/h.) 799.386 799.512 800.539 

APLM (p.u.) 2.966 2.984 3.076 

VMDM (p.u.) 0.081 0.089 0.141 

µT of FMOPF 0.834 0.685 0.563 

 

  

Fig. 8. The convergence behavior of TSCM. Fig. 9. The convergence behavior of APLM. 

  

Fig. 10. The convergence behavior of VMDM. Fig. 11. The convergence behavior of µT of FMOPF. 

 

The results of individual objectives and FMOPF 

are shown in Table 6. In FMOPF overview, it is obvious 

that when minimizing an individual single-objective can 

result in a higher solution for other objectives. The 

minimum TSC obtained from the proposed method is 

799.386 $/h. Under this condition, the APL and VMD 

are 8.718 p.u. and 0.807 p.u., respectively. Meanwhile, 

when minimizing APL by APLM, the lowest value of 

APL is 2.966 p.u. However, the minimum APL 

condition is lead to the highest solution of TSC of 

967.342 $/h. Similarly, the lowest VDM condition is 

lead to the higher value of TSC and APL at 929.577 $/h 

and 8.751 p.u. 

To obtain a fair comparison with the PPSOGSA 

method [32], the simulations were tested under the same 

system data and control variables. A comparison of the 

proposed FMOPF and PPSOGSA method showed that 

the FMOPF yielded the results for the individual 

objective, including TSCM, ALPM, and VMDM, better 

than the results of the PPSOGSA method, as shown in 

Table 6. However, the performance of the system is 

significantly improved by simultaneous minimization of 

http://www.rericjournal.ait.ac.th/
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TSC, APL, and VMD. Therefore, the cooperative 

solution among individual objectives may gain benefit 

to the system depending on the operator's requirement. 

When solving the MOOP using the proposed FMOPF 

for this case, the soft computational bargain between the 

contradiction objectives can be obtained. It is shown that 

a slightly increasing in TSC can decrease the VMD from 

0.807 to 0.221 p.u.  Simultaneously, the APL is reduced 

from 8.718 to 6.802 p.u. As a result, the proposed 

FMOPF can compromise among TSCM, APLM, and 

VMDM, under the fuzzy trade-off concept. Meanwhile, 

the PPSOGSA method uses the weighted sum method to 

solve the MOOP. 

 
Table 6. Comparison results of the modified IEEE 30-bus test system for MOOP. 

Control 

Variables 

TSCM APLM VMDM MOOP 

PPSOGS

A [32] 
FMOPF 

PPSOGSA 

[32] 
FMOPF 

PPSOGS

A [32] 
FMOPF 

PPSOGS

A [32] 
FMOPF 

Power Generation (PGi) at Bus (MW) 

2 48.58 48.84 80.00 80.00 49.04 80.00 52.66 46.40 

5 21.37 21.36 50.00 50.00 44.74 49.97 31.73 36.64 

8 21.44 20.93 35.00 35.00 18.41 35.00 34.94 34.94 

11 11.94 11.91 30.00 30.00 24.13 10.11 25.28 17.20 

13 12.00 12.00 40.00 40.00 14.50 29.80 20.38 16.17 

Generator Voltage (|Vi|) Magnitude at Bus (p.u.) 

1 1.08 1.10 1.06 1.10 1.01 0.99 1.03 1.03 

2 1.07 1.09 1.06 1.10 1.00 1.05 1.02 1.02 

5 1.03 1.06 1.04 1.08 1.02 1.02 1.00 0.99 

8 1.04 1.07 1.04 1.09 1.01 0.99 1.01 1.00 

11 1.09 1.04 1.06 1.03 1.00 1.04 1.01 1.10 

13 1.04 1.07 1.05 1.06 1.02 0.96 1.01 1.02 

Transformer Tap-Changing (Ti-j) between Buses 

6-9 1.02 1.08 1.02 1.10 1.02 1.05 1.03 1.02 

6-10 0.95 0.99 0.94 0.97 0.90 1.08 0.91 1.04 

4-12 0.96 1.05 0.99 1.05 1.01 0.94 0.98 0.98 

28-27 0.98 1.04 0.98 1.05 0.96 0.99 0.97 0.98 

SVC Reactance Values (XCi) at Bus (p.u.) 

10 -1.39 -18.02 -0.26 -45.00 -0.22 -20.03 -0.20 -43.29 

12 -0.72 -29.56 -0.47 -29.31 -0.28 -23.77 -0.95 -24.25 

15 -0.22 -34.91 -0.21 -28.98 -0.20 -45.00 -0.21 -44.67 

17 -0.20 -15.66 -0.20 -15.77 -3.08 -13.63 -1.40 -42.37 

20 -0.25 -45.00 -0.22 -45.00 -0.20 -44.20 -0.20 -45.00 

21 -0.20 -9.42 -0.20 -9.59 -0.20 -7.41 -0.20 -22.24 

23 -0.26 -44.99 -0.29 -45.00 -0.20 -26.95 -0.20 -43.25 

24 -0.20 -15.65 -0.20 -14.14 -0.20 -8.72 -0.20 -44.39 

29 -0.30 -44.99 -0.37 -45.00 -0.77 -43.30 -0.34 -45.00 

TSC ($/h.) 800.528 799.386 967.669 967.342 849.613 929.577 829.598 827.206 

APL (p.u.) 9.027 8.718 3.103 2.966 7.420 8.751 6.110 6.802 

VMD (p.u.) 0.911 0.807 0.891 0.888 0.090 0.081 0.110 0.221 

 

5. CONCLUSION 

This paper proposed the FMOPF formulation with 

various control variables using PSO. The proposed 

method can successfully provide the optimal operating 

condition of the active power generation, the generator 

voltage magnitudes, the transformers tap changings, and 

the SVCs setting values. The considered objectives are 

TSCM, APLM, and VMDM. The fuzzy concept is 

applied to solve the MOOP, tested on the original and 

the modified IEEE 30-bus test system. The proposed 

FMOPF has the ability and good performance to obtain 

the compromised solution among conflictual objectives. 

NOMENCLATURE 

|SLi| the MVA flow of line i (MVA) 

|VGi| the voltage magnitude of generator at bus 

i (p.u.). 

|Vi | the voltage magnitudes at bus i (p.u.). 

|Vi
ref |  the reference value of the voltage 

magnitude at bus i. 

|Vj | the voltage magnitudes at bus j (p.u.). 

|VLi| the voltage magnitude at load bus i (p.u.). 

µAPL the fuzzy satisfaction function of active 

power loss. 
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µT the fuzzy satisfaction function. 

µTSC the fuzzy satisfaction function of total 

system cost. 

µVMD the fuzzy satisfaction function of voltage 

magnitude deviation. 

ai, bi, ci the cost coefficients parameters of 

generator i. 

APL the active power loss (p.u.). 

APLmax the maximum acceptable active power 

loss obtained by TSCM and VDM. 

APLmin the minimum active power loss obtained 

by RPLM. 

Bij the imaginary of admittance between 

buses i and j. 

fi the objective function to be optimize. 

g the equality constraints representing 

nonlinear power flow equations. 

Gij the real parts of admittance between 

buses i and j. 

gL,ij the conductance of line L between buses i 

and j. 

h the system operating constraints. 

NB the buses total number. 

NC the shunt compensators total number. 

NG the generators total number. 

NL the branches total number. 

Nobj the objectives total number. 

NPQ the PQ buses total number. 

NT the transformers total number. 

NTL the transmission line total number. 

PDi the real power load demand at bus i 

(MW, p.u.). 

PGi the real power generation at bus i (MW, 

p.u.). 

QCi the shunt VAR compensator (p.u.). 

Ti the transformer tap changing (p.u.). 

TSC the total system cost ($/h.). 

TSCmax the maximum acceptable total system 

cost obtained by RPLM and VDM. 

TSCmin the minimum total system cost obtained 

by TSCM. 

u the column vector of independent control 

variables. 

VD the voltage deviation (p.u.). 

VDmax the maximum acceptable voltage 

deviation obtained by TSCM and RPLM. 

VDmin the minimum voltage deviation obtained 

by VDM. 

x the vector of dependent variables. 

θij the voltage angles between buses i and j 

(radian). 

Superscript 

L lower limit. 

U upper limit. 
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