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The manager of the electricity supply chain needs to correctly forecast one of the 

most important variables affecting the management of the electricity chain. This 

article has proposed a hybrid model for electricity demand forecasting using deep 

learning. Firstly, the historical electricity demand data is decomposed using 

empirical mode decomposition (EMD) algorithm. Then, whale optimization 

algorithm (WOA) is used to determine signal decomposition levels rounds by 

EMD and the allocation of signals to neural networks. Parameters that promote 

accuracy of the forecast are selected using principal component analysis (PCA). 

A group of signals are fed into a back propagation neural network, whose 

components are decomposed by wavelet transform. The weights of this neural 

network are determined by using elephant herding optimization (EHO) algorithm 

(WTBPNN-EHO). The rest of the signals with higher levels of complexity are fed 

into the long short-term memory (LSTM) neural network. Finally, the load is 

calculated by aggregating the results of these two neural networks. Finally, the 

performance of this model has been compared with other existing models. 
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1 1. INTRODUCTION 

Electricity load demand is a necessary variable required 

for planning and controlling the electricity generation 

and distribution chain [1]. The high accuracy of load 

forecasting, increases the efficiency of the electricity 

network planning, and reduces the additional costs 

caused by excessive production or shortages in the 

network [2]. In this regard, various models have been 

designed for forecasting the electricity load demand.  

 Electricity load demand can be divided into very 

short, short, midterm and long-term classes in terms of 

time period [3]. In medium and long-term forecasting, 

which includes one month and longer durations, 

economic and social parameters with significant changes 

in medium and long-term periods are also used in 

addition to parameters such as temperature and humidity 

[4]. Also, the load demand forecasting models are 

structurally divided into three categories: linear, 

nonlinear, and hybrid models [5]. 

 Linear models are those that employ mathematical 

formulation to determine the relationship between one or 

more variables. These include auto regression integrated 

moving average (ARIMA) [6], autoregressive – moving-

average model with exogenous model (ARMAX) [7], 

linear regression (LR) [8], single exponential (SE) [9], 

high pass filter model with auto regression (HPF + AR 

(1)) [10], seasonal auto regression integrated moving 
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average (SARIMA) [11], Fourier seasonal SARIMA 

(FS-SARIMA) [12] and the like. These models have 

poor performance with nonlinear signals and are not 

able to identify complex relationships between 

parameters and variables [13]. 

 The second category includes nonlinear models 

that are able to learn, reason, and correct themselves. 

These models have higher performance with more 

complex types of signals. Some examples of this 

category include power load forecasting model using 

support machine vector and ant colony optimization 

(SVM-ACO) [14], bees algorithm and artificial neural 

network (BA-ANN) [15], support vector regression - 

chaotic artificial with bee colony algorithm (SVM-

CABCA) [16], wavelet particle swarm optimization 

neural network simulation optimization (wavelet-PSO-

NNs-SO) [17], chaotic gravitational search algorithm 

(CGSA) [18], and shared subscribe hyper simulation 

optimization (SUBHSO) [19]. Getting stuck in the local 

optimum, and overfitting may occur in these models. 

 The third category involves hybrid models to cope 

with the problems of other approaches [20]. In this 

category, two or more statistical models or, more often, 

artificial intelligence-based models are used 

simultaneously. These include empirical mode 

decomposition minimal redundancy maximal fruit fly 

optimization general regression neural network (EMD-

mRMR-FOA-GRNN) [21], wavelet empirical mode 

decomposition improved grasshopper optimization 

algorithm neural network and ARIMA (EMD-IGOA- 

ARIMA-NN) [22], ARIMA-ANN- multiple linear 

regression (MLR) (ARIMA-ANN-MLR) [23], and 

improved EMD ARIMA-neural network fruit fly 

optimization (ARIMA-NNFOA-IEMD) [24].  
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 A group of models based on deep learning is 

included in this category, which have better performance 

compared to other hybrid models. These include LSTM 

[25], multi task attention- LSTM (MTAL) [26], neural 

network- LSTM (NN-LSTM) [27], bidirectional LSTM 

(BI-LSTM) [28], SARIMA- LSTM [29], convolutional 

neural network - LSTM (CNN-LSTM) [30], self-

attention algorithm-LSTM (SAM-LSTM) [31], and 

EMD-GA-LSTM [32]. Feature selection methods have 

also been used to improve performance in electricity 

load demand forecasting models. These include the 

seasonal persistence-based regressive model (SPR) [33], 

two stage mutual information feature selection technique 

based on the transudative model (MIT-MIT) [34], 

minimal redundancy maximal relevance (Mrmr) [35], 

improved multilayer binary firefly algorithm (MBFA) 

[36], memetic algorithm (MA) [37], and support vector 

regression (SVR) [38]. 

This study considered a specific feature selection 

method in examining the process of developing hybrid 

models based on deep learning. In order to eliminate the 

mixing of signals, and increase the accuracy of the 

forecasting, the input signal is decomposed using EMD. 

WOA algorithm is used to improve the performance of 

the EMD by calculating the optimal number of intrinsic 

mode functions (IMFs) and determining the method of 

their division and allocation to the two neural networks 

(EMD-WOA).  

 Upon determining the optimal number of IMFs and 

their allocation method, higher- and lower-level IMFs 

are fed into LSTM and wavelet back propagation neural 

networks with EHO (WTBPNN-EHO), respectively. 

Then, the best parameters are selected through PCA and 

the data are analyzed by two neural networks. LSTM is 

used to analyze high-level IMFs due to its stronger 

memory and higher accuracy dealing with more 

complex signals.  

 Moreover, the study uses BPNN neural network for 

increasing the accuracy of forecasts parallel to LSTM to 

analyze lower-level IMFs. The electricity load 

consumption signal in BPNN is decomposed using 

Daubechies of order5 wavelet transform and its weights 

are optimized through EHO method (WTBPNN-EHO).  

As a result, the proposed model of this paper is a 

combination of EMD, WOA, PCA, WTBPNN-EHO and 

LSTM models. 

 The performance of this model is evaluated using a 

data set of Iran’s electricity load consumption. Finally, 

the accuracy of the proposed model and four deep 

learning-based models are compared by defining error 

evaluation criteria. 

Furthermore, the validity of the proposed model is 

compared with the existing models through Wilcoxon 

method.  

 The proposed model, and experimental framework 

are presented in sections 2 and 3, respectively. The 

conclusions are drawn in the fourth section.  

2. PROPOSED MODEL 

The proposed model used a deep learning model based 

on LSTM. In order to promote the performance of 

LSTM, EMD-WOA method is used for signal 

decomposition, while WTBPNN-EHO neural network is 

employed in parallel. The components of the model and 

its structure are illustrated in the following. 

2.1 Model Components 

 2.1.1 EMD 

To obtain the time frequency of a signal, a method 

should be adopted to extract the latent intrinsic modes of 

the signal. The EMD algorithm has been target for this 

purpose. It indicates what frequency exists in a signal at 

any given moment. It also shows the frequency 

magnitude. This method is employed for signal 

decomposition to eliminate signal interference and 

improve forecasting accuracy [39]. 

 In brief, the EMD algorithm includes the following 

steps [33]. 

1- Find the position of all extremum points of 

signal x(t). 

2- Find up and low envelope through a cubic 

curve. 

3- find the average of the up and low curves. 

4- Reduce the average of the up and low curves. 

ℎ1(𝑥) =  y𝑡 − 𝑚1(𝑡) (1) 

5- Standard deviation (SD) (2)  is used as a stop 

condition: 

𝐷𝑘 =  
∑ |ℎ1

𝑘−1(𝑡) − ℎ1
𝑘(𝑡)|

2
 𝑇

𝑡=0

∑ |ℎ1
𝑘−1(𝑡)|

2
 𝑇

𝑡=0

 (2) 

 

6- If Equation 2 is not valid, the resultant signal of 

Step 3 is used as the main signal, and the 

process then proceeds from Step 1. 

7- If Equation 2 is true, the screening process 𝑐1 =
ℎ1

𝑘(𝑥) ends, and  is then used as the first IMF, 

the first upper-level of signal x(t). 

8- The remainder is defined as 𝑟1 = y𝑡 − 𝑐1
𝑘

. 

When the stop condition is met, it is considered 

an IMF; otherwise, if it meets Condition a, it is 

considered the primary signal, and Steps 1–4 

are repeated to obtain the next IMF. If 

Condition a is not met, it is considered a 

remainder. Therefore, signal y(t) is defined as 

Equation 3: 

𝑦𝑡 =  ∑ ℎ𝑛

𝑁

𝑛=1

+ 𝑟 (3) 

 2.1.2 WOA 

This algorithm starts with a set of random solutions, in 

each iteration the search agents update their position 

according to each of the search agents randomly or with 

the best solution obtained. This algorithm is performed 

in three phases, which are as follows: 

Encircling prey 

The following formulas are used to update search 

answers and parameters: 

http://www.rericjournal.ait.ac.th/
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�⃗⃗� =  [𝐷 .⃗⃗ ⃗⃗    𝑈∗⃗⃗ ⃗⃗  (𝑡) − 𝑈 ⃗⃗  ⃗(𝑡) ] (4) 

𝑈 ⃗⃗  ⃗(𝑡 + 1) = 𝑈∗⃗⃗ ⃗⃗  (𝑡) − 𝐵 .⃗⃗ ⃗⃗  𝐻 ⃗⃗⃗⃗  (5) 

 In the formula above, D is search space; B and D is 

coefficients. Also, Y* is the best answer in the t 

iteration; and 𝑈 ⃗⃗  ⃗(𝑡) is the solutions of the current 

iteration and 𝑈 ⃗⃗  ⃗(𝑡 + 1)  is the solutions of the next 

iteration of the algorithm. The vectors B and D are 

determined as follows: 

�⃗� =  2 𝑒 . 𝑟 − 𝑎  (6) 

�⃗⃗� =  2 𝑟  (7) 

Bubble-net attacking method (exploitation phase) 

In this mechanism, the distance between the position of 

the wall and the location of the bait is calculated. Then 

the spiral movement is created as shown in the following 

equation: 

𝑈 ⃗⃗  ⃗(𝑡 + 1) = 𝐻′⃗⃗⃗⃗ . 𝑒𝑏𝑙 . 𝑐𝑜𝑠( 2𝜋𝑙) + 𝑈∗⃗⃗ ⃗⃗  (𝑡)  (8) 

 Where H 'is the distance between the bait (the best 

solution) and the whale. b is a constant. l is a random 

number in [-1, 1]. We adjust the mathematical model of 

these two mechanisms. We assume that the probability 

of 50% choice between these two mechanisms for 

updating the position of the valves is as follows: 

𝐻′⃗⃗⃗⃗ = |𝑈∗⃗⃗ ⃗⃗  (𝑡) − 𝑈 ⃗⃗  ⃗(𝑡)| (9) 

 

𝑈 ⃗⃗  ⃗(𝑡 + 1) = 

{
𝑈∗⃗⃗ ⃗⃗  (𝑡) −  𝐵 .⃗⃗ ⃗⃗  𝐻 ⃗⃗⃗⃗                                   𝑖𝑓 𝑘 < 0.5        

𝐻′⃗⃗⃗⃗ . 𝑒𝑏𝑙 . 𝑐𝑜𝑠( 2𝜋𝑙) + 𝑈∗⃗⃗ ⃗⃗  (𝑡)             𝑖𝑓 𝑘 ≥ 0.5        
 

(10) 

 Where k is a random number between 0 and 1.  

 

Search for prey (exploration phase) 

In the exploration phase, whales in the flock (search 

agents) randomly search for prey (the best solution) and 

change their positions according to the positions of other 

whales. In order to force the search agent away from the 

reference whale, we use B with values > 1 or < 1. The 

mathematical model of the exploration stage is as 

follows:  

�⃗⃗� = |�⃗⃗�  𝑌𝑅𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − �⃗⃗� | (11) 

 �⃗⃗� (𝑡 + 1) = 𝑈𝑅𝑎𝑛𝑑
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ −  𝐵 .⃗⃗ ⃗⃗  𝐻 ⃗⃗⃗⃗    (12) 

 In the above equations, 𝑈𝑅𝑎𝑛𝑑  is a randomly-

selected position vector (random whale) from the current 

population 

 2.1.3. EMD-WOA 

In the literature [21]-[22], the number of signal 

decomposition rounds and the method of their allocation 

to neural networks are predetermined. In this study, we 

use WOA meta-heuristic method to optimize these 

values, to increases the model’s accuracy.  

 Higher-level IMFs are fed into LSTM neural 

network due its memory and ability of analyzing more 

complex signals (Figure 1). On the other hand, lower-

level IMFs are fed into WTBPNN-EHO neural networks 

given the high performance of back propagation 

networks in analyzing signals with less complexity.  

 For this purpose, the vector 𝑋 (t) is calculated using 

Equation 13. 

𝑋 ⃗⃗  ⃗(𝑡) = ( 𝜃𝑡 , 𝜃′𝑡)    ∀𝑡 ∈ 𝑇  (13) 

 Where 𝜃𝑡 is the number of signal decomposition 

levels in the t iteration, and 𝜃′𝑡is the signal split point in 

period t. The fitness function used in this hybrid model 

is equal to Equation 14 . 

𝜔𝑡 = 
1

𝑁
 ∑|

∂𝑡−1 − ∂̂𝑡−1

∂𝑡−1

|       

𝑁

𝑡=1

 (14) 

 Where ∂̂𝑡−1is the actual amount of forecast in period t-1 and ∂𝑡−1 is the real amount of demand in period t-1 .

 
Table 1. Neural networks parameters. 

Neural network parameter name Quantity 

Number of hidden layers 𝑛ℎ𝑙 3 

The number of neurons in layers (𝑛𝑛𝑒
𝑖 ) (300, 357, 362) 

Dimensions of the data set (Batch Size) 100 

Algorithm optimizer adam 

Cost Function (Loss) MSE 

Epoch Number (𝑛𝑒𝑝𝑜𝑐ℎ) 150 

Activator function (𝑓𝑎𝑐𝑡) relu 

Total number of data (N) 2000 

number of Train data (𝑛𝑡𝑟𝑎𝑖𝑛) 1600 

number of Test data (𝑛𝑡𝑒𝑠𝑡) 400 
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Fig. 1. EMD optimization by WOA. 

 

 2.1.4 WTBPNN 

BPNN is a deep learning method for a more accurate 

calculation of the weight gradient, by optimizing a 

learning algorithm and fixating the weights of neurons 

through the calculation of the downward gradient of a 

cost function.  

 The first step is the feed-forward, multiplying the 

input data by weights, and then adding the result to the 

deviation. The output of this step is equal to the actual 

output.  

 Then, the loss function indicates the error rate of 

the feed-forward step, based on which the weights of 

layers are modified in the second step through the feed-

backward [42]. According to many studies of electricity 

load forecasting, integrating a neural network with 

wavelet transforms can improve the neural network 

outputs [43].  

 One of the spectral analysis approach is to analyze 

the unstable signal in order to achieve a better time and 

frequency resolution of the signal. Wavelet transform 

has two different types, discrete and continuous. 

 Mathematically, a continuous wavelet transform 

can be described by the following function: 

𝑋𝑤(𝑣, 𝑤) =  
1

|𝑣|2
 ∫ 𝑥(𝑡)𝐿 (

𝑡 − 𝑤

𝑣
)𝑑𝑡  

−∞

∞

 (15) 

 In the above formula, 𝐿(𝑡) is continuous mother 

wavelet that has been transferred by factor 𝑣  and 𝑤 ., 

there are many mother functions such as Beta, Spline, 

Shannon, and Hermitian  [45-46]. Here, three steps of 

Daubechies of order 5 (db5) is applied. This study 

benefits from Mallat et al. [44] research that introduced 

multi regression analysis (MRA). This method consists 

of two phases: decomposition and a combination of 

components that is divided into two level of signal 

frequencies. This process is continued for low frequency 

signals until meet the termination criterion is met.  

Figure 2 displays the decomposition approach 

represented in the Equation 16. 

𝐷   = l1+h1 

              = h1+h2+l2             

                        = h1+h2+h3+l3 

(16) 

Now, we describe three layouts: 

- The input layer: The value of the rth node of the first 

layer is calculated as 𝑌´𝑟  through the multiplication 
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of the input value Yi in the vector weight Wir by 

using F: 

𝑌´𝑟 =  𝐹 (∑ 𝑊𝑖𝑟  𝑌𝑖

𝑚

𝑖=1
 )       ∀𝑟 = 1.… . 𝑝 (17) 

- The hidden layer: The value of the sth node of the 

second layer is calculated as Y  ̋𝑠  through the 

multiplication of the input value by the first-layer 

node 𝑌´𝑟  by the weight of vector 𝑈𝑟𝑠 with the help 

of 𝐹´: 

Y  ̋𝑠   =  𝐹´ (∑𝑈𝑟𝑠 𝑌´𝑟

𝑃

𝑟=1

 )   ∀𝑠 = 1.… . 𝑞 (18) 

- The output layer: The value of the oth node of the 

output layer is calculated as 𝑦𝑜  through the 

summation of the second-layer input value Y  ̋𝑠  by 

the weight of vector 𝑉𝑠𝑜  with the help of 𝐹 ̋. This 

layer includes the db5 : 

𝑍𝑜   =  𝐹  ̋ (∑𝑉𝑠𝑜     Y   ̋
𝑠 

𝑞

𝑠=1

)   ∀𝑜 = 1.… .4 (19) 

 

 

 
Fig. 3. The neural network structure after propagation through a wavelet transform. 

 

 2.1.5. EHO 

Elephant herding optimization with two operators has 

been used as a multifunctional optimization method. A 

full description of this method is given in [47]. The 

operators of this algorithm are as follows: 

Clan updating operator 

In every clan, elephants are under the custodianship of a 

leader; therefore, an elephant’s next position in clan 𝑐𝑖 is 

affected by the leader 𝑐𝑖. The following equation is valid 

for the jth elephant in the clan 𝑐𝑖: 

𝑘𝑛𝑒𝑤,𝑐𝑖,𝑗
= 𝑘𝑐𝑖,𝑗

+  𝛼 × (  𝑘𝑏𝑒𝑠𝑡 ,𝑐𝑖
− 𝑘𝑐𝑖,𝑗

) × 𝑏 (20) 

Where 𝑘𝑛𝑒𝑤,𝑐𝑖,𝑗
 and 𝑘𝑐𝑖,𝑗

 refer to the new and previous 

positions of the jth elephants in the clan 𝑐𝑖, whereas 𝛼 =

[0,1]  is a scale coefficient that indicates the 

effectiveness of the herd leader on the update of other 

members. Furthermore,𝑏 is a random number between 0 

and 1, and 𝑥𝑏𝑒𝑠𝑡 ,𝑐𝑖
 denotes the clan leader that is the 

most appropriate response to the optimization problem. 

The clan leader or the most appropriate elephant of 

every clan cannot update its position through (21). 

𝑘𝑛𝑒𝑤,𝑐𝑖,𝑗
= 𝛽 × 𝑘𝑐𝑒𝑛𝑡𝑒𝑟,𝑐𝑖

 (21) 

In (Equation 22) 𝛽 = [0.1] is a scaling coefficient that 

shows the effectiveness of 𝑘𝑐𝑒𝑛𝑡𝑒𝑟,𝑐𝑖
 on 𝑘𝑛𝑒𝑤,𝑐𝑖,𝑗

. 

 
Fig. 2. The three-step decomposition of electricity load demand. 
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According to (21), 𝑘𝑛𝑒𝑤,𝑐𝑖,𝑗
 is obtained from all the 

elephants of the clan 𝑐𝑖  through the existing 

information. It is the center of the clan 𝑐𝑖  that can be 

calculated through the following equation for the next 

problem: 

𝑘𝑐𝑒𝑛𝑡𝑒𝑟,𝑐𝑖
= 

1

𝑛𝑐𝑖

 ×  ∑𝑘𝑐𝑖,𝑗,𝑔

𝑛𝑐𝑖

𝑗=1

 (22) 

Where 1 ≤ 𝑔 ≤ 𝐺  shows the gth dimension, and 𝑛𝑐𝑖
 

indicates elephent populations in the clan 𝑐𝑖 , whereas 

𝑘𝑐𝑖,𝑗,𝑑
 refers to the gth dimension of 𝑘𝑐𝑖,𝑗,𝑔

. 

Segregation operator 

In every elephant clan, male elephants leave their 

families at puberty and start living alone. This separation 

is modeled as a segregation operator in the EHO 

algorithm to solve optimization problems. To improve 

the search power in this algorithm, a solution with the 

smallest value of the fitness function can be updated 

through Equation 23 in every generation. 

𝑘𝑤𝑜𝑟𝑠𝑡,𝑐𝑖
= 𝑘𝑚𝑖𝑛 + ( 𝑘𝑚𝑎𝑥 − 𝑘𝑚𝑖𝑛 + 1 )  × 𝑏 (23) 

In the above equation, 𝑘𝑚𝑎𝑥  and 𝑘𝑚𝑖𝑛  refer to the 

maximum and minimum range of elephant’s position in 

the clan 𝑐𝑖, whereas 𝑥𝑤𝑜𝑟𝑠𝑡,𝑐𝑖
 indicates the worst position 

that an elephant can have in the tribe. Moreover, b is a 

random number between 0 and 1. 

 2.1.6. WTBPNN- EHO 

In the previous studies, it has been shown that 

metaheuristic methods in combination of neural 

networks have better results rather than other exact 

solution methods.[3] Many different metaheuristic 

algorithms such as ACO, Differential Evolution  (DE) , 

GA and  etc. have been used to improve neural network 

performance.  

 This study uses advanced EHO algorithm for this 

purpose due to its higher accuracy in achieving optimal 

solutions compared to other metaheuristic algorithms. 

[47] Optimization of neural network weights were 

conducted through the following steps: 

- Adjusting the algorithm's parameters such as 

the number of layout, nodes, size of EHO 

population and etc. 

- Fitness function is considered equal to the 

correlation coefficient. (Equation 24). 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ( 
𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥, 𝑦)

√𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑥)𝑣𝑎𝑟𝑎𝑟𝑖𝑎𝑛𝑐𝑒(𝑦)
) (24) 

- For creation the initial coordinates for the 

population, the motion interval of 𝑥𝑖
𝑡 is defined 

as (25), which is discrete; therefore, the initial 

coordinates are defined as (26). 

𝐷𝑥𝑐𝑖,𝑗
= [min(𝑥𝑐𝑖,𝑗

) .max (𝑥𝑐𝑖,𝑗
)] (25) 

𝑥𝑐𝑖,𝑗
0 = 𝑅𝑎𝑛𝑑 (𝐷𝑥𝑐𝑖,𝑗

) (26) 

-The motion function of the population in every 

iteration should be defined as Equations 25 and 

26. The new solutions are generated until the 

termination condition is met. 

The forecasted db5 components that generated by the 

neural network sum up to calculate𝑆�̂� . Figure 4 shows 

the combination of signals to calculate the final 

forecasted electricity load demand. 

 

Fig 4. combination of the electricity load demand 

component. 

The following fitness function should be minimized in 

the neural network: 

𝑓𝑡 = 
1

𝑁
∑(S𝑡 − S ̂𝑡)

2 

𝑁

𝑡=1

 (27) 

Where S𝑡 refers to the real and S ̂𝑡 denotes the forecasted 

electricity load at t. 

2.1.7. LSTM 

LSTM networks use a memory cell with feedback gain 

to eliminate successive matrix multiplication. [48] The 

model is shown in Figure 5. LSTM network consists of 

different components: 

Input Gate: 

This gate recognizes which of the values is suitable for 

memory improvement and assigns weight to the stored 

values-based on the tan function between 0 to 1. 

𝑖𝑡 =  𝜎 ( 𝐸𝑖 . [𝑆𝑡−1, 𝑍𝑡] + 𝑞𝑖  )  (28) 

�̃�𝑡 =  𝑡𝑎𝑛ℎ ( 𝐸𝑐 . [𝑆𝑡−1, 𝑍𝑡] + 𝑞𝑐  ) (29) 

 

 
Fig. 5. LSTM model diagram. 
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Forgetting Gate: 

In this gate, the sigmoid function keeps or deletes the 

previous input information ( ℎ𝑡−1 )) and checks the 

content input (𝑋𝑡) in the 𝐶𝑡−1cell state : 

𝑓𝑡 =  𝜎 ( 𝐸𝑓 . [𝑆𝑡−1, 𝑍𝑡] + 𝑞𝑓 ) (30) 

Output Gate: 

The Sigmoid function retains or deletes the values-based 

on the input data and the previous memory using the tan 

function and assigns weight to the retained values. 

𝑢𝑡 =  𝜎 ( 𝐸0. [𝑆𝑡−1, 𝑍𝑡] + 𝑞0 )  (31) 

𝑆𝑡 = 𝑢𝑡 . tanh(𝐶𝑡) (32) 

2.2. Model structure 

The proposed model uses two parallel WTBPNN neural 

networks optimized through EHO and LSTM methods 

to forecast electricity load demand. The data is analyzed 

through EMD before being fed to the neural networks. 

The WOA method is used to determine signal 

decomposition levels and the method of their allocation 

to neural networks. The input parameters of the neural 

network are then selected by PCA method. Finally, the 

results of neural network analysis are aggregated. Figure 

6 shows the structure of the proposed model. The model 

is implemented taking five steps as follows:  

1. The input signal is decomposed by emd. The WOA 

algorithm determines the number of signal 

decomposition rounds and the method of their 

allocation to neural networks. 

2. The best parameters are selected though PCA. 

3. The signals in which  𝐼𝑀𝐹𝑝𝑞 > 𝐼𝑀𝐹𝜃𝑞  ∀𝑞 ∈ Q are 

fed into WTBPNN-EHO 

4. The signals in which 𝐼𝑀𝐹𝑝𝑞 ≤ 𝐼𝑀𝐹𝜃𝑞  ∀𝑞 ∈ 𝑄  are 

fed into LSTM  

5. LSTM and WTBPNN- EHO forecasted value are 

sum up to achieve final forecasting value

 

 
Fig. 6. proposed model structure. 
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3.  EXPERIMENTAL FRAMEWORK 

3.1 Error Criteria 

The mean absolute percentage error (MAPE) in (33), the 

mean absolute error (MAE) in (34), and the root mean 

square error (RMSE) in (35) are employed to compare 

the performance of the proposed model with the other 

models, and assess forecasting improvements made by 

the methods introduced in [49]. These equations are 

used in Section 4 to evaluate performance of proposed 

model. 

𝑀𝐴𝑃𝐸 =  
1

𝑀
 ∑|

ϑ𝑡 − ϑ�̂�

ϑ𝑡

|

𝑀

𝑡=1

 (33) 

𝑀𝐴𝐸 =  
1

𝑀
 ∑|ϑ𝑡 − ϑ�̂�|

𝑀

𝑡=1

 (34) 

𝑅𝑀𝑆𝐸 =  
1

𝑀
 √∑  (ϑ𝑡 − ϑ�̂�  )

2
𝑀

𝑡=1

  (35) 

3.2 Discussion and Results 

This model is compared with deep-learning-based 

hybrid models, including SARIMA-LSTM, NN-LSTM, 

SAM-LSTM and CNN-LSTM in terms of accuracy. The 

model uses best parameters among population, air 

temperature, and historical data on electricity load 

demand in previous cycles, humidity, and power 

consumption peaks per day. The signal of the electricity  

load demand historical data is shown in Figure 7. 

 For instance, we used this model to forecast 

January 10, 2016 demand. Figure 8 indicates the signal 

decomposition of historical data of electricity load 

demand through the EMD method in different iterations 

of the WOA. 

 

 
Fig. 7. Historical data of electricity load consumption. 

 

The selection of features is also done by the PCA 

model, which shows how the model works in Figure 9. 

 Steps 3 and 4 of Section 2.2 that forecasting the 

amount of electricity load are shown in Figure 10. 

 The results of load forecasting on January 10, 2016 

by the proposed model and the four existing models are 

shown in Figure 12, part a. In this diagram, the actual 

amount of load demand on this day is equal to 3647 and 

the values forecasting by SARIMA-LSTM, NN-LSTM, 

SAM-LSTM and CNN-LSTM algorithms and the 

proposed model are equal to 4011, 3974, 3829, 3574 and 

3610 MW respectively. Also shown in Figure 11 are the 

other days of 2016 by this model. 

 Table 2 is a comparison of the proposed model 

with the existing models based on the error assessment 

criteria. To compare the performance of the models, the 

standard error chart for real and forecasts values is 

shown in Figure 1. Table 2 indicates the results of 

executing the proposed model with those of the other 

models based on the MAPE on average for 2016. 

Accordingly, the proposed model improved accuracy by 

6.9% compared to the SARIMA-LSTM; however, it 

improved accuracy by 4.9% instead of the nonlinear 

NN-LSTM. Compared with the SAM-LSTM, the 

proposed model improved accuracy by 1.4%, whereas it 

improved accuracy by 0.3% compared to CNN-LSTM. 

The proposed model was also employed to run similar 

analyses for the 2017–2019 period, which indicated that 

the model managed to maintain the improvements for 

the data of the other three years. Figure 13 demonstrates 

the MAPE values for the four study years.

 

http://www.rericjournal.ait.ac.th/


Salami M., et al. / International Energy Journal 23 (March 2023) 23 – 38        

www.rericjournal.ait.ac.th  

31 

 
Fig. 8. Signal decomposition with EMD-WOA. 

 

 
Fig. 9. Feature selection by PCA model. 
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Fig. 10. RMSE optimization during execution a) WTBPNN-EHO b) LSTM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Comparing the performance of the proposed model with those of other models in error assessment index. 

Model Criterion Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec. Average 

SARIMA-

LSTM 

MAPE 0.099 0.096 0.096 0.107 0.100 0.098 0.092 0.102 0.096 0.101 0.096 0.099 0.098 

MAE (MW) 326.71 346.57 329.45 335.88 368.81 347.83 326.88 307.63 354.21 327.16 353.98 325.72 337.57 

RMSE 40.12 43.61 41.31 41.98 44.49 44.74 40.05 38.23 43.38 40.39 43.88 40.51 41.89 

NN-LSTM 

MAPE (%) 0.074 0.079 0.075 0.082 0.087 0.086 0.072 0.070 0.078 0.080 0.078 0.074 0.078 

MAE (MW) 284.46 284.43 303.93 286.30 316.48 339.61 333.27 270.79 266.57 295.62 300.93 295.07 298.12 

RMSE 36.24 35.95 37.47 35.68 38.80 40.73 40.83 33.09 33.87 35.94 35.90 35.79 36.69 

SAM-

LSTM 

MAPE (%) 0.042 0.045 0.043 0.042 0.044 0.041 0.044 0.045 0.045 0.037 0.042 0.042 0.043 

MAE 

(MW) 
118.69 133.17 124.61 121.54 129.83 117.82 126.26 132.61 133.83 103.10 125.95 122.63 124.17 

RMSE 14.68 16.12 15.42 15.11 15.51 14.79 15.45 16.24 16.32 13.13 15.62 15.23 15.30 

CNN-

LSTM 

MAPE (%) 0.029 0.032 0.034 0.032 0.031 0.032 0.033 0.031 0.032 0.031 0.029 0.032 0.032 

MAE 

(MW) 
88.05 73.31 82.92 91.42 81.70 78.98 85.96 88.26 81.43 86.11 82.33 82.48 83.58 

RMSE 10.65 9.36 10.42 11.42 10.22 9.99 10.87 11.05 10.42 11.03 10.62 10.36 10.53 

proposed 

model 

MAPE (%) 0.0298 0.0304 0.0289 0.0284 0.0286 0.0298 0.0284 0.0288 0.0271 0.0288 0.0288 0.0301 0.029 

MAE (MW) 48.85 51.12 44.65 44.29 44.20 48.85 43.65 45.41 37.73 45.63 45.64 49.50 45.79 

RMSE 6.00 6.34 5.74 5.76 5.78 6.01 5.60 5.81 5.20 5.76 5.86 6.13 5.83 
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Fig. 11. Comparison of performance of models in a) spring b) summer c) autumn d) winter 2016. 
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Figure 12. Standard error value of the proposed model with other models in a) spring b) summer c) autumn d) 

winter 2016. 

 

 
Fig. 13. Comparison models in MAPE for the 2016–2019 period. 

 

3.3 Validation 

If random pair values are considered with the sample 

size of n, the number of values will be 2n due to the odd 

number of samples. Based on the components, the 

pairwise observations are shown as 𝑦1,𝑖  and 𝑦2,𝑖  for 𝑖 =

1 𝑡𝑜 𝑛. Statistical hypothesis testing aims to determine 

the differences between two pairs. Therefore, the null 

hypothesis is considered the equality of values between 

pairs, whereas the alternative hypothesis considers a 

difference between pairs [50]. Accordingly, the 

following steps are taken for hypothesis testing through 

the Wilcoxon method: 

I. The absolute differences of pairs are calculated as 

|𝑥2,𝑖 − 𝑥1,𝑖|  for 𝑖 = 1,2, … , 𝑛  for all observations, 

and the signs (positivity and negativity) of these 

differences were determined through 𝑠𝑔𝑛(𝑥2,𝑖 −

𝑥1,𝑖). 
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II. The pairs are excluded from the analysis when their 

sign functions were zero. Therefore, 𝑛𝑟  remaining 

pairs are considered. However, such pairs can be 

used in only positive or negative groups to prevent a 

substantial reduction in the number of observations 

when the sample is too small. 

III. The resultant values of absolute differences 

(|𝑥2,𝑖 − 𝑥1,𝑖|) are sorted from low to high. 

IV. The ranks of absolute values of differences are 

determined. Some knotted ranks might have been 

obtained from some values. In this case, the mean 

ranks are considered for such observations. The 

smallest difference is ranked first, and the different 

rank of pair i is shown by Ri. 

V. The Ƒ statistic is calculated through Equation 36. 

Ƒ =  ∑[𝑠𝑔𝑛 (𝑥2,𝑖 − 𝑥1,𝑖  ) . 𝑅𝑖 ]

𝑛𝑟

𝑖=1

 (36) 

That Ƒ is known as the total signed ranks. Under the null 

hypothesis, the probability distribution W is 

complicated; however, its mean equals zero, and its 

variance is obtained from the following equation: 

𝜎𝑤
2 = 

𝑛𝑟 ( 𝑛𝑟 + 1)(2𝑛𝑟 + 1)

24
  (37) 

Despite standard tables in this method, the null 

hypothesis is rejected if |Ƒ| < Ƒ𝛼,𝑛𝑟 . Table 3 shows 

the validity of results between proposed model with 

others. 

Table 3. Wilcoxon signed-rank test. 

Wilcoxon signed-rank test 

Compared Model 
α=0.05, 

Ƒ=3 
α=0.025, Ƒ=2 

0 0 SARIMA 

2 2 BAANN 

3 3 IEMDFOA 

2 2 
proposed model without 

WOA 

4. CONCLUSIONS AND SUGGESTIONS 

This paper follows the development of medium- and 

long-term forecast models to determine load forecasting 

that is helpful for management of the electricity supply 

chain. We used a deep-learning-based hybrid model to 

find a best result for demand variable compared with last 

models.  

 Historical data on electricity load consumption 

have been broken down into sub-signals using EMD. In 

this model, a smart mechanism has been employed to 

use WOA for determining the optimum number of 

signal decomposition rounds by EMD, as well as the 

method of feeding decomposed signals to each of the 

two neural networks. The best parameters contributing 

to the load demand have been selected from the 

parameters available in the database through PCA.  

WTBPNN-EHO method has been used to increase the 

accuracy of electricity load demand forecasting, whose 

input components have been decomposed by wavelet 

transform method and its weights were optimized by 

EHO. 

 Also, LSTM has been used in parallel. The results 

of each of the two neural networks have been aggregated 

to obtain the final forecasted value. The performance 

comparison of this model with other existing models 

based on the data of Iran network indicated an 

improvement in the accuracy of electricity load 

forecasting in the proposed model.  

 We recommend development of a mechanism for 

selecting the factors in addition to features in future 

research. It is also recommended that a smart method be 

considered to optimize the parameters of neural 

networks simultaneously. 
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