
Abadi A.M., et al. / International Energy Journal 22 (September 2022) 269 – 280  

www.rericjournal.ait.ac.th  

269 

 

A R T I C L E  I N F O  
 

A B S T R A C T  

Article history: 

Received 06 December 2021 

Received in revised form  

17 April 2022 

Accepted 31 May 2022 

 

Transformer’s efficiency is essential and significantly affects the transformer’s 

performance in delivering power. The efficiency is affected by copper losses, of 

which value is not constant. To improve a state-owned electricity company in 

Indonesia (PLN) in increasing the optimization of transformer loading, a more 

accurate calculation of transformer copper losses is needed. In this study, a new 

method was proposed to assess the value of copper losses using a fuzzy system, 

namely the first-order Takagi-Sugeno-Kang (TSK) method combined with 

Singular Value Decomposition (SVD). The fuzzy system was built based on 

training data. Upon this data, clustering was carried out with fuzzy c-mean 

(FCM). The results of the FCM were cluster centers, which were then used to 

construct membership functions and fuzzy rules. The parameters on the 

consequent of each first-order TSK fuzzy rule were determined using SVD. The 

last step was defuzzification to obtain the value of the transformer copper losses. 

The defuzzification method used was the weight average. The fuzzy system that 

had been built was tested on all data to determine and obtain the accuracy of the 

copper losses values. The results of this study indicated that the determination of 

transformer copper losses with a fuzzy system for training and testing data have 

accuracies of 99.3354% and 99.6490%, respectively. Furthermore, the first-order 

TSK method gives better results than that of the zero-order TSK and Mamdani 

methods. 
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1 1. INTRODUCTION 

Electricity is the most needed energy source in the 

modern era. The consumption of electrical energy 

increases in line with population growth [1]. Electricity 

has been used in various activities such as entertainment, 

communication, lighting, learning, work, and 

transportation [2]. Thus, electricity plays an important 

role among the sources of energy for life [3]. 

Electrical energy is distributed by electricity 

providers to consumers. In Indonesia, a state-owned 

electricity company, called Perusahaan Listrik Negara 

(PLN), is a provider and distributor of electrical energy 
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through substations [4]. The substation has several 

components, one of which is a transformer. 

Transformers are equipment used to connect electrical 

power transmission systems at different voltage levels 

[5]. Some substations in Indonesia use three-phase 

transformers, including in the Special Region of 

Yogyakarta. A three-phase transformer serves in 

distributing electrical energy to customers [6]. 

Transformers could experience losses in delivering 

power [5]. One type of losses in a transformer is copper 

losses. It is caused by the current flowing in the copper 

wire windings on the primary and secondary sides [7]. 

Copper losses arise from the load current, which is not 

constant [8]. In meeting the needs of electrical energy to 

customers, transformers must have high efficiency to be 

able to deliver power optimally [9]. Transformer’s 

efficiency can be affected by the value of copper losses 

[10]. Therefore, it is necessary to determine the 

calculation of copper losses with good accuracy. 

Determination of copper losses can be carried out 

by using several analytical methods, namely the finite 

element method and measurements [11]. The analytical 

method can only be applied to simple transformer 

structures and cannot be applied to complex winding 

structures. While the measurement method has the 

potential to obtain higher accuracy results, the 

equipment and experiments carried out are complicated 

[7]. 
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Several studies have been conducted to determine 

copper losses in transformers. Research on determining 

transformer copper losses has been carried out using a 

winding layer allocation approach utilizing the Dowell 

analysis method with Maxwell's equations [12]-[15]. 

The Dowell method exhibits good results in predicting 

copper losses. However, the Dowell method has the 

disadvantage that it is difficult to use in transformers 

with parallel-connected windings [12], [14]. Lin and 

Fuchs [16] investigated the determination of copper 

losses using an online losses measurement method when 

the transformer operates under load conditions. This 

method is based on voltage and current sensors and the 

results showed good accuracy. 

Intelligent control systems have been used in 

various applications and fuzzy logic is one of these 

intelligent systems. The applications of fuzzy logic in 

control systems are for instances in vehicle control, 

robots, and stabilization [17]. In several studies, fuzzy 

logic has also been applied to transformers. Malik et al. 

[18], in their research, used fuzzy logic to predict 

minimum losses and to design optimal transformers. The 

result of the study stated that fuzzy logic was feasible to 

use. In another study, a fuzzy system was applied to 

design an optimal power converter in the transformer 

[19] to simulate the transformer’s voltage drop 

accurately with a simple model [20], determine the total 

copper losses and core losses [21], [22], and improve the 

diagnostic accuracy of gas analysis in transformers [23]. 

The fuzzy system has several methods, one of 

which is the Takagi Sugeno-Kang (TSK) method. The 

first-order fuzzy TSK has a consequent linear equation 

that can give high accuracy results with few fuzzy rules 

[24]. TSK fuzzy system has been used in several studies. 

Ippolito et al. [24] modeled the overload prediction on 

the power transformer using the TSK fuzzy system and 

gave good accuracy results with an error of less than 

3%.  

Based on the description above, there has been no 

research on determining the transformer copper losses 

using a fuzzy system. Therefore, in this research, the 

transformer copper losses are determined by using a 

fuzzy system. The fuzzy system is chosen because the 

input variables used contain uncertain values. The 

advantage of the fuzzy system is that it can model 

nonlinear functions on data that contains uncertainty. 

The inference method used is the first-order TSK 

method combined with the singular value decomposition 

(SVD) method. TSK fuzzy rules are built using the 

fuzzy c-means (FCM) method. The FCM method can 

transform classification into mathematical optimization 

[25]. From the results of the classification using FCM, 

the value of the cluster center could be changed into 

linguistic variables and transformed into fuzzy rules 

[26]. In this study, the copper losses are determined 

based on the input variable of load current and 

transformer voltage from the transformer load data. The 

calculation of transformer copper losses in this paper 

emphasizes efforts to improve a state-owned electricity 

company in Indonesia (PLN) in increasing the 

optimization of transformer loading, so that in the 

future, transformer operation management can be 

integrated with applications developed based on this 

method. 

2.  THEORETICAL REVIEW 

2.1 Transformer Copper Losses 

Copper losses can occur when the transformer is 

running. The losses occur in the windings when the 

transformer is loaded [27]. Copper losses can be 

identified after the transformer losses are known. The 

transformer losses can be determined from the sum of 

the final losses of each component of the harmonic 

current [28]. The total transformer losses are the sum of 

the copper losses and the core losses. This can be 

expressed in the equation below [16]:  

∑𝐿𝑜𝑠𝑠 = 𝑃𝑐𝑢 + 𝑃𝑖 (1) 

where cuP  is the copper losses and iP  is the core losses. 

The total transformer losses are obtained from the 

difference between the input power and the output 

power. This is expressed in Equation (2) [16] below. 

outinloss PPP −=  (2) 

Transformer losses can be computed when the 

transformer voltage and current flowing in the 

transformer are known. Using a known current, the 

copper losses can be calculated [29]. 

2.2 First-Order TSK Fuzzy System 

There are several fuzzy inference processes in the fuzzy 

system, including the Mamdani, Tsukamoto, and Takagi 

Sugeno-Kang (TSK) methods. In this research, the first 

order TSK model was used where the fuzzy rule can be 

expressed as [30]: 
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where iC  is a fuzzy set and ib  is a constant. 

2.3 FCM 

FCM is a technique of grouping data into several 

clusters. Determination of a datum in a cluster is based 

on the degree of membership [31]. The degree of 

membership of data in a cluster uses the concept of 

fuzzy logic, that is the data has a degree between 0 to 1 

in each cluster. The degree of membership indicates the 

level of membership of the data in the cluster [32]. The 

data grouping technique in the FCM method is done 

using the following steps [33]: 

1. Determining the number of clusters ( c ), power ( m ), 

smallest error (  ), and initial matrix (U ). 

2. Calculating the cluster center using the equation: 





=

==
n

k

m
ik

k

mn

k
ik

i

y
v

1

1

)(

)(




 (4) 

3. Calculating the matrix U  using the equation: 

http://www.rericjournal.ait.ac.th/


Abadi A.M., et al. / International Energy Journal 22 (September 2022) 269 – 280  

www.rericjournal.ait.ac.th  

271 

 

(5) 

4. Iterating the procedure from step 2 to 3 until 

− −1II UU . If 1+= tt , then step 2 is 

repeated. 

FCM results can be used to develop a fuzzy 

system. The cluster center of the FCM results is used as 

a fuzzy linguistic variable and then transformed into a 

fuzzy rule [26].  

2.4 SVD 

The SVD of matrix A of size m × n over real numbers is 

expressed in Equation (6) [34], i.e.: 

TVUA =  (6) 

where U  is an orthogonal matrix of size mm , V  is 

an orthogonal matrix of size nn  , and 

( )rdiag  ,,, 21 =  is matrix nm   of which the 

diagonal element is called the singular value of the 

matrix [35]. If matrices U  dan V  are expressed as 

column vectors ),,,( 21 nuuuU =  and 

),,,( 21 nvvvV = , then Equation (6) can be expressed 

as Equation (7)[36], i.e.: 

T
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n
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1
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3.  METHODS 

3.1 Data Description 

The data used in this study were the load data obtained 

from PT. PLN APJ Yogyakarta in November 2019. The 

data contained transformer load current in R phase 

(ampere), S phase (ampere), T phase (ampere), 

transformer voltage (volt), and copper losses (kW) from 

12 transformer substations in Special Region of 

Yogyakarta with a capacity of 60 MVA with peak load 

at 10.00 western Indonesian time (WIB) 360 data were 

obtained, which were then divided into 75% of training 

data or 270 training data and 25% of testing data or 90 

testing data. Tables 1 and 2 show the training and testing 

data, respectively. 

 

Table 1. Training data. 

R Current S Current T Current Voltage Copper Losses 

1082.24 983.04 1062.88 21.1 65.82 

1263 1135 1188 20.3 77.88 

496 544 531 21.3 26.16 

984 969 1003 20.9 58.52 

⋮ ⋮ ⋮ ⋮ ⋮ 

895 931 901 20.5 48.63 

642 527 550 20.6 28.35 

 

 
Table 2. Testing data. 

R Current S Current T Current Voltage Copper Losses 

689 687 695 20.4 35.09 

890.28 845 776 20.5 41.89 

1002 1023 1049 20.9 62.76 

861 840 952 20.2 44.82 

⋮ ⋮ ⋮ ⋮ ⋮ 

837 800 830 20.5 41.34 

860 828 832 21 43.73 

 

3.2 Research Steps 

In this study, data analysis was carried out using a fuzzy 

system with the first-order TSK method to determine the 

value of transformer copper losses at the Yogyakarta 

Special Region substation. The fuzzy system was built 

using the training data, whereas the testing data was 

used to test the fuzzy system. The steps in conducting 

this research are presented in Figure 1. 

The research steps were initiated by selecting a 

substation transformer with a capacity of 60 MVA, 

namely 12 transformers and 360 data were obtained 

during the month of November 2019. Before building 

the fuzzy membership function, the cluster center was 

determined from the training data using FCM. The 

results of each variable cluster center were used as the 

peak of each membership function and used to construct 

the fuzzy rules. The inference system uses the first-order 

TSK method. The parameters at the consequent of each 

fuzzy rule were determined by the SVD method. To 
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establish the accuracy of the model, the system was 

tested based on the values of Mean Absolute Percentage 

Error (MAPE) and Mean Square Error (MSE) for 

training and testing data, respectively. 

 

 
Fig. 1. Research steps. 

 

4.  RESULTS AND DISCUSSION 

4.1 Determining the Input and Output Variables  

This research uses 4 input variables, namely R phase 

current, S phase current, T phase current, and 

transformer voltage. The output variable in this study is 

transformer copper losses. 

4.2 Determining the Cluster Center 

The test results of several clusters are shown in Table 3.  

The best accuracy results were used to build the fuzzy 

system. 

Based on Table 3, the fuzzy system is then built 

using 10 clusters. The cluster center results from the 

FCM are shown in Table 4. Afterwards, the cluster 

center is used as the peak of the fuzzy membership 

function and to construct the fuzzy rules. The cluster 

center is used to construct 10 fuzzy rules and 10 

membership functions at each input variable.  

 

Table 3. Test results of several clusters. 

Number of Cluster Training Data Accuracy (%) Testing Data Accuracy (%) 

4 99.1646 99.3613 

6 99.3189 99.4528 

10 99.3354 99.6457 

 

 

Table 4. Cluster center. 

No. Cluster 
Variables 

R Current S Current T Current Voltage Copper Losses 

1 1112 1068.3 1098 20.61 68.56 

2 1411.8 1364.9 1388.7 20.73 106.67 

3 719.14 712.03 720.02 20.58 36.79 

4 901.04 877.49 898.78 20.63 47.66 

5 995.13 957.32 1001.5 20.67 57.33 

6 648.04 653.92 659.3 20.79 33.77 

7 431.04 351.79 372.5 20.3 13.99 

8 785.13 777.18 786.24 20.62 39.95 

9 550.84 564.57 557.06 20.8 27.7 

10 1240.4 1175.4 1213.2 20.53 81.09 
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4.3 Determining the Transformer Copper Losses 

using the Fuzzy System 

a. Building the Membership Function 

The membership function is built based on the cluster 

center. Therefore, each input variable uses 10 fuzzy sets 

with the membership function using the Gauss curve, 

which is defined in Equation (8), i.e.: 

( )












 −−
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exp),;(




cx

cxg  
(8) 

where c is the center and σ is the width of the curve. 

This study uses the standard deviation of the data to 

determine the width of the curve. The membership 

function in each input variable is determined as follows. 

1. R phase current (R): Based on the training data, the 

smallest and largest values of the R phase current are 

0 and 1549, respectively, so the universal set is UR = 

[0,1549]. The 10 fuzzy sets are defined in the R 
phase current variable with membership functions of 

R1, R2, R3,..., R10. The membership function graphs 

are presented in Figure 2.  
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2. S phase current (S): According to the training data, 

the smallest and largest values of the S phase current 

are 0 and 1545, respectively, so that the universal set 

is US = [0,1545]. The 10 fuzzy sets defined in the S 

phase current variable have membership functions of 

S1, S2, S3,..., S10, of which graphs are presented in 

Figure 3. 
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Fig. 2. The membership functions of the R phase variable. 

 

 

Fig. 3. The membership functions of the S phase variable. 
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3. T phase current (T): Based on the training data, the 

smallest and the largest values of the T phase current 

are 0 and 1600, respectively, thus the universal set is 

UT = [0,1600]. Consequently, 10 fuzzy sets are 

defined in the T phase current variable with 

membership functions of T1, T2, T3,..., T10. These 

graphs are given in Figure 4. 
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4. Transformer voltage (V): Finally, based again on the 

training data, the smallest and largest values of the 

voltage are 0 and 21.3, respectively. Therefore, the 

universal set is UV = [0,21.3]. Moreover, the 10 

fuzzy sets are defined in the voltage variable with 

membership functions, namely V1, V2, V3,..., V10. The 

graphs of the membership functions are presented in 

Figure 5. 
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Fig. 4. The membership functions of the T phase variable. 

 

 

Fig. 5. Voltage variable membership functions. 

 

b. Building the Fuzzy Rules 

According to the clustering results, 10 fuzzy rules are 

constructed. The first-order TSK fuzzy rules are built 

based on Table 3 with fuzzy sets shown in Figures 2 to 

5. The obtained 10 fuzzy rules are shown as follows: 

Rule (1): “If R phase current is 8R  and S phase current 

is 8S  and T phase current is 8T  and the voltage is 4V , 

then 

𝑦1 = 𝑏10 + 𝑏11 ∗ 𝑅 + 𝑏12 ∗ 𝑆 + 𝑏13 ∗ 𝑇 + 𝑏14 ∗ 𝑉.” 

Rule (2): “If R phase current is 10R  and S phase current 

is 10S  and T phase current is 10T  and the voltage is 8V , 

then 

𝑦2 = 𝑏20 + 𝑏21 ∗ 𝑅 + 𝑏22 ∗ 𝑆 + 𝑏23 ∗ 𝑇 + 𝑏24 ∗ 𝑉.” 
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Rule (10): “If R phase current is 9R  and S phase current 

is 9S  and T phase current is 9T  and the voltage is 2V , 

then 

𝑦10 = 𝑏100 + 𝑏101 ∗ 𝑅 + 𝑏102 ∗ 𝑆 + 𝑏103 ∗ 𝑇 + 𝑏104 ∗ 𝑉” 

The parameter ijb  is calculated by using SVD method. 

c. Defuzzification 

Defuzzification is the transformation that maps the fuzzy 

set to a crisp value at the output [30]. This study used 

the weight average defuzzification method [30], which 

is expressed as Equation (9). 
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Moreover, Equation (9) can also be expressed as 

Equation (10), i.e.: 
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The model parameters are determined by minimizing the 

objective function J [37], which is expressed in Equation 

(11). 
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where )(kd  is the real output for the kth data and )(ky  

is the first-order TSK output model for the kth data, 
TNdddd )]()2()1([ =  and X  are matrices of size 

])1[( LnN +  with N  is the number of data, n  is the 

number of input, and L  is the number of rules, whereas 

][ 1011110 LnLLn bbbbbbb =  is a matrix of size 

1])1[( + Ln . Matrix X  could be expressed as 
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Equation (11) will reach a minimum value if 

|||| Xbd − is minimum. Furthermore, 

||ˆ||}||:min{|| )1( bXdRbXbd Ln −=− + where the 

vector matrix b̂ is shown in Equation (12) [38], i.e.: 
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where r  is a non-zero singular value. The elements of 

matrix b̂  are used to estimate the parameters ijb of the 

matrix b . The matrix entries are shown in Table 5.  

 

Table 5. Matrix �̂� entries. 

Row 1-5 Row 6-10 Row 11-15 Row 16-20 Row 21-25 

4.6255E+04 1.7475E+05 2.8921E+03 7.749E+03 -418.5940 

-12.5702 -54.3968 -14.9051 -3.2432 0.0163 

-10.1348 -57.5249 -18.3512 -4.7049 0.0153 

-12.5201 -54.7720 -16.3996 -2.8161 0.1002 

4.5071 -450.2119 -1.0814E+03 11.7208 17.0349 

 

Row 26-30 Row 31-35 Row 36-40 Row 41-45 Row 46-50 

-0.0213 1.6041E+04 2.3029E+04 -1.5528E+03 3.7302E+03 

0.0811 -5.4181 -2.6726 -2.3717 -0.7065 

-0.0059 -5.1611 -3.4575 -2.1164 -0.6789 

0.1158 -4.5796 -3.3608 -2.5853 -0.8332 

-3.6100 145.2935 -416.7054 88.1682 9.2122 

 

The entries of matrix b̂  are then used as the 

consequent parameter of the rule. Subsequently, the 

fuzzy rules are obtained as follows. 

Rule (1): “If R phase current is 8R  and S phase current 

is 8S and T phase current is 8T and the voltage is 4V , 

then  

𝑦1 = (4.6255𝐸 + 04) + −12.5702 ∗ 𝑅 + −10.1348 ∗
𝑆 + −12.5201 ∗ 𝑇 + 4.5071 ∗ 𝑉 .” 

Rule (2): “If R phase current is 10R and S phase current 

is 10S and T phase current is 10T and the voltage is 8V , 

then  

𝑦2 = (1.7475𝐸 + 05) + −54.3968 ∗ 𝑅 + −57.5249 ∗
𝑆 + −54.7720 ∗ 𝑇 + −450.2119 ∗ 𝑉 .” 
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Rule (10): “If R phase current is 9R and S phase current 

is 9S and T phase current is 9T and the voltage is 2V , 

then 

𝑦10 = (3.7302𝐸 + 03) + −0.7065 ∗ 𝑅 + −0.6789 ∗
𝑆 + −0.8332 ∗ 𝑇 + 9.2122 ∗ 𝑉 .” 

Then, using Equation (9), the TSK model (13) is 

obtained. 
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Equation (13) is then used to determine the transformer 

copper losses in the training and testing data. 

d. Determining Error and System Accuracy 

In this study, as there are actual data with a value of 0 

that produce the same prediction value, which is also 0, 

the MAPE calculation is only carried out on non-zero 

data. The MAPE and MSE values from the training and 

testing data based on the first-order TSK fuzzy system 

are presented in Table 6.  

Furthermore, a comparison of the accuracy values 

for determining transformer copper losses is carried out 

with the first-order TSK, zero-order TSK, and Mamdani 

fuzzy systems. This comparison is shown in Table 7. 

The results show that the first-order TSK fuzzy system 

has better accuracy than both zero-order TSK and 

Mamdani methods.  

The values of copper losses from the real data and 

first-order TSK model can be observed in Figure 6. 

Based on Figure 6, the copper loss values are affected by 

the load value, which is represented by the current and 

voltage values of the transformers. There are some 

transformers whose copper loss values exceed the values 

listed in the manual book. This condition is caused by 

factors other than the load value, namely the 

transformers’ age and cooling condition. 

The transformer loss values based on the prediction 

and real data for each transformer in all substations can 

be seen in Figures 7, 8, 9, and 10. 
 

 

Table 6. The values of MAPE and MSE. 

Type of Data MAPE (%) MSE 

Training 0.664605 0.108066 

Testing 0.354325 0.194703 

 

 
Table 7. Comparison of the accuracy of the test results. 

 First-Order TSK (%) Zero-Order TSK (%) Mamdani (%) 

Training Data 99.3354 97.1957 96.2799 

Testing Data 99.6457 97.2341 96.4882 

 

 

 

Fig. 6. The real data and fuzzy model prediction results of copper losses. 
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Fig. 7. Transformer copper losses in Bantul. 

 

   

Fig. 8. Transformer copper losses in Gejayan (Transformers I and II) and Godean (Transformer I). 

 

   

Fig. 9. Transformer copper losses in Godean (transformer II) and Kentungan (transformers II and IV). 
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Fig. 10. Transformer copper losses in Kentungan (transformer III), Semanu (transformer I), and Wirobrajan 

(transformer I). 

 
Table 8. Average value of copper losses for all transformers. 

transformer 
average of real 

copper losses 

average of copper losses based on the fuzzy model 

Lowest value Highest value average 

Trafo I 

BNL 
76.5025 35 131 76.6016 

Trafo II 

BNL 
69.3081 42 109 69.2212 

Trafo III 

BNL 
30.9093 22.3485 39 30.9002 

Trafo I 

GJN 
56.6427 33 91 56.7076 

Trafo II 

GJN 
64.2665 35 129 64.4963 

Trafo I 

GDN 
26.5620 10 36 26.6326 

Trafo II 

GDN 
34.3412 7 49 34.3090 

Trafo II 

KTN 
57.7247 38 95 57.7885 

Trafo IV 

KTN 
49.8434 0 94.4211 49.8051 

Trafo III 

KTN 
50.2988 33 72 50.2810 

Trafo I 

SMU 
39.8065 35 48 39.7378 

Trafo I 

WBN 
51.5281 33 116 51.5016 

 

Figures 7 to 10 depict graphs of daily copper losses 

for 30 days of all the transformers at Yogyakarta 

substations. Based on Figure 7, the daily copper loss 

values on transformer III Bantul are relatively more 

stable compared to the transformers I and II Bantul. 

Based on Table 8, the lowest average copper loss occurs 

on transformer III Bantul, which is 30.9002 kW, 

whereas transformer I Bantul has the highest average 

copper loss of 76.6016 kW. In Figure 8, the copper loss 

values of transformer I Godean are relatively increasing 

from the first day until the end of the month. 

Furthermore, Table 8 also shows that transformer I 

Godean has the lowest average copper loss of 26.6326 

kW compared to the average copper losses of 

transfomers I and II Gejayan. Figure 9 and Table 8 show 

that the daily copper loss values on transformer II 

Godean are relatively stable around the average of 

34.3090 kW, while the highest average copper loss 

occurs on transformer II Kentungan of 57.7885 kW. 

Moreover, Table 8 shows that the lowest copper loss on 

transformer IV Kentungan is 0 kW because the 

aforementioned transformer was not in operation for a 

day. Finally, based on Figure 10, the daily copper losses 

on transformer I Semanu are more stable compared to 

the copper losses on transformer III Kentungan and 

transformer I Wirobrajan. 

5. CONCLUSION 

In this study, a first-order TSK model is built using the 
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FCM and SVD methods to determine transformer 

copper losses at the substations in the Special Region of 

Yogyakarta, Indonesia. FCM is used to construct fuzzy 

rules, and SVD is used to determine the parameters on 

the consequent of each fuzzy rule. The value of copper 

losses from the system is obtained using the weight 

average defuzzification process. The proposed method 

gives better accuracy than zero-order TSK and Mamdani 

models. From the calculation results of all transformers, 

an average copper loss value of 50.806 kW is obtained. 

The highest copper loss value is 131 kW from 

transformer I at the Bantul substation, while the lowest 

copper loss is 7 kW from transformer II at Godean 

substation. Copper losses from most of the calculation 

results still meet the standard value for transformer 

copper losses. The copper loss values on the 

transformers are affected by the current and voltage 

values of the transformers. Only a few transformers 

exhibited copper losses that exceed the standard value. 

Transformer copper losses affect the performance of a 

transformer, so that by knowing the value of copper 

losses in all transformers at the Yogyakarta substation, 

PLN can evaluate the performance of the transformer 

continuously. In the future, transformer operation 

management can be integrated with applications 

developed based on this method. 
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