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The purpose of this paper is to examine an empirical method and identify the 
possible linkage between energy consumption and commodity prices in the context 
of Iran's agriculture. Different linear and non-linear models are estimated using 
quarterly data over 26 years from the second quarter of 1991 to the first quarter 
of 2017. Our results confirm the asymmetric impact of energy consumption shocks 
on agricultural commodity prices. Results of the Markov switching model show 
that agricultural prices respond negatively to any shock from energy consumption 
whereas, the effect of energy consumption on agricultural commodity prices in the 
high inflation rate regime is less than the low inflation rate regime. The empirical 
evidence indicates that the probability of remaining in the high inflation rate 
regime equals 93%, which is more than the other regime. The agricultural 
inflation rate is low and in 36 seasons and high in 63 seasons. Additionally, this 
study found an asymmetry in the agricultural price volatilities due to most of the 
coefficients changing across regimes. 
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1  1. INTRODUCTION 

Today, the food-energy nexus is a vital issue. Energy in 
the food production chain is an essential feature of 
agricultural development and a critical factor in 
achieving food security. 
 Energy use in the agricultural sector has increased 
to respond to the growing demand of the population, the 
limited supply of cultivated lands, and the desire for 
high standards of living [1], [2]. In agriculture, energy 
consumption is divided into two parts: direct and 
indirect. Direct energy relates to different tasks in the 
agricultural production process such as land preparation, 
irrigation, plowing, harvesting, and transportation of 
agricultural inputs and farm production [3]. Direct 
energy is the energy consumed in the manufacturing, 
packaging, and transportation of fertilizers, pesticides, 
and farm machinery [4], [5]. 
 Therefore, the agricultural sector is heavily 
dependent on energy which affects agricultural prices. 
Fluctuation in agricultural price is one of the most 
critical challenges for policymakers. Rapid rise in food 
prices has a significant negative impact on social 
welfare, which is an issue that is more critical in 
developing countries than in developed countries. 
According to the Food and Agriculture Organization 
(FAO) report in 2018, the food world price index 
increased from 89.6 to 229.9 during the period from 
2002 to 2011.  
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 In recent years, many studies were conducted to 
investigate the contentious issue of the food-energy 
nexus. The next section provides an overview of recent 
studies on food and energy prices. Several studies have 
confirmed the relationship between energy and food 
prices including Bergmann et al. [6], Rezitis [7], Zhang 
and Qu [8], Byrne et al. [9], Belke and Dreger [10], 
Nazlioglu et al. [11], Natanelov et al. [12], Jongwanich 
and Park [13], Kaltalioglu and Soytas [14], Balcombe 
and Rapsomanikis [15]. 
 Recently, Ueda and Kunimitsu [16] investigated 
the effect of price changes in fossil fuel resources on 
world food prices. The findings displayed strong 
evidence of a relationship between mechanized 
agriculture sectors (wheat, plant fibers, and fishing) and 
the world oil sector. Taghizadeh-hesary et al. [17] 
examined the relationships between energy price and 
food price using the panel vector autoregressive (Panel-
VAR) model for the selected Asian nations. Their 
findings revealed that the price of oil has a significant 
impact on food prices. Shehu et al. [18] demonstrated 
the asymmetric relationship between oil price shocks 
and food prices in the short run and long run using a 
non-linear autoregressive distributed lag analysis in 
Nigeria. Olasunkanmi and Oladele [19] found strong 
evidence of the asymmetric effect of oil price changes 
on agricultural commodity prices in Nigeria using a non-
linear autoregressive distributed lag (NARDL) 
approach. Al-Maadid et al. [20] tried to discover a 
linkage between food and energy prices. The estimation 
results of a bivariate vector autoregressive-generalized 
autoregressive conditional heteroscedasticity (VAR-
GARCH) (1,1) model showed significant relationships 
between food and both oil and ethanol prices. Mawejje 
[21] studied the impact of energy and climate shocks on 
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food prices in Uganda. They found a long-term 
relationship between food prices and energy prices.  
 McFarlane et al. [22] attempted to examine the 
relationships between oil prices and selected agricultural 
commodity prices (corn, wheat, and sugar) in the U.S., 
using a vector autoregressive (VAR) model for two 
consecutive seven-year periods: 1999-2005 and 2006-
2012. They found strong evidence of co-integration 
between prices in both series. Cabrera and Schulz [23] 
assessed price and volatility risk originating in linkages 
between energy and agricultural commodity prices in 
Germany through an asymmetric dynamic conditional 
correlation GARCH model. Results showed that prices 
move together and preserve an equilibrium in the long 
run while correlations are mostly positive with persistent 
market shocks. Nwoko et al. [24] investigated the 
impact of oil price on the volatility of food prices in 
Nigeria by using a VAR model from 2000 to 2013. They 
found evidence of a positive and significant short-run 
relationship between oil price and food price volatility. 
Koirala and Mehlhorn [25] analyzed the dependency 
between agricultural commodity prices and energy 
prices and found a high positive correlation and a 
significant relationship between oil and food prices. 
Ibrahim [26] used a structural non-linear autoregressive 
distributed lag (NARDL) model to discover linkages 
between Malaysia's food and oil prices. Results showed 
a significant relationship between oil price increases and 
food prices in the long-run, but there is no linkage 
between oil price reduction and food prices. Wang et al. 
[27] tried to discover the effect of oil price volatility on 
agricultural markets. The estimation results from a 
structural VAR analysis showed that the relationship 
between agricultural commodity prices and oil price 
volatility depends significantly on oil supply shocks, 
aggregate demand shocks or other oil-specific shocks. 
Sassi [28] investigated the literature on food prices. The 
results of their research showed that various factors 
affect the food price, especially the price of energy. 
Nazlioglu and Soytas [29] analyzed the dynamic 
correlation between world oil prices and agricultural 
commodities' prices. They employed panel co-
integration and Granger causality methods for a panel of 
twenty-four agricultural products over 1980-2010. Their 
results revealed strong support for the role of world oil 
prices on the prices of several agricultural commodities. 

Du et al. [30] assessed the linkage between the volatility 
of crude oil prices and agricultural commodity markets 
using Bayesian Markov Chain Monte Carlo methods 
over ten years from 1998 to 2009. Their findings 
indicated the recent oil price shocks appear to have 
triggered sharp price changes in agricultural commodity 
markets, especially in the corn and wheat markets. 
Alghalith [31] attempted to examine the impact of the 
oil price on the food price by annual time series data 
(1974–2007) of Trinidad and Tobago. Results showed 
that increasing oil production leads to a reduction in 
food prices. 
 On the other hand, some research shows that there 
is no direct linkage between oil and agricultural 
commodity prices (e.g. Pindyck and Rotemberg [32], 
Abbott et al. [33], Gilbert [34], Zhang et al. [35],). For 
example, Gardebroek and Hernandez [36] shed light on 
the effect of oil price volatility on agricultural markets in 
the United States between 1997 and 2011. The 
estimation results from a multivariate GARCH approach 
showing that change in U.S. corn price does not depend 
on energy price change. Jiranyakul [37] failed to 
indicate the long-run relation between oil price 
fluctuation on consumer prices in Thailand. Abdulaziz et 
al. [38] found that negative oil price fluctuation has no 
significant effect on food prices. More recently, Meyer 
et al. [39] found evidence of a significant long term and 
positive linkage between oil price increases and food 
prices using a non-linear panel autoregressive 
distributed lag (ARDL) model. But they showed that 
there is no relationship between oil price decreases and 
food prices. 
 In this study, we investigated the impact of energy 
consumption, especially oil and its derivatives, on 
agricultural price inflation in Iran. According to a British 
Petroleum (BP) report [40] in 2018, the total primary 
energy consumption in Iran was around 285.7 million 
tonnes of oil equivalent (MTOE). In comparison to 
2017, the growth rate was approximately 3.2%, and it 
was also compared to the last ten years (2007-2017) and 
average annual growth rate was approximately 5 %. This 
comparison shows an increase in the consumption trends 
during recent years. According to Iran’s Ministry of 
Energy (ME) reports [41] in 2016, the share of the 
agriculture sector in Iran’s total energy consumption was 
4%, as shown in Figure 1. 

 

 
Fig. 1. The share of energy consumption of different sectors in Iran (EBSI, 2016). 

 

http://www.rericjournal.ait.ac.th/


Naraghi N., Moghaddasi R., and Mohamadinejad A. / International Energy Journal 21 (March 2021) 159 – 170       

www.rericjournal.ait.ac.th  

161 

 Agriculture is an essential sector to the Iranian 
economy with a share of about 10% of gross domestic 
product, 18% of employment, and more than 15% of 
non-oil exports [42]. Therefore, the fluctuation in the 
price of agricultural commodities plays a significant role 
in inflation. Inflation is a major challenge for 
policymakers in Iran, and a single-digit inflation rate 
was one of the critical targets of the Iranian economy in 
recent years.  
 The agricultural price index is the most crucial tool 
for measuring inflation in the economy. High inflation is 
not a new phenomenon in Iran. With an annual average 
increase of 17.5%, the consumer price index rose from 
0.056 to 109.6 from 1970 to 2017. Due to subsidy 
reform, international sanctions, and world price 
volatilities in food and oil markets, the inflation rate of 
agricultural commodity prices in Iran rose from 0.33% 

in 1991 to 25% in 2017. Hence, the analysis of high 
inflation determinants in Iran is useful for policymakers 
and contributes to a better design of policies. 
 An ME report in 2016 compared the energy 
consumption of industry and agriculture in Iran between 
1991 and 2016, a period of 25 years. Overall, the energy 
consumption of industry was far higher than the energy 
consumption of agriculture and the energy consumption 
trend has fluctuated in recent decades in Iran (Figure 2). 
As Figure 2 shows, the agricultural sector's energy use 
has increased in 1994, 1998, 2003, and over the years 
2005–2011. The ME report also shows that both the 
agricultural price and energy consumption have been 
highly volatile throughout the whole-time frame. In 
addition, there is an inverse correlation between 
agriculture and energy; as energy consumption 
decreases, agricultural prices increase (Figure 2). 

 

 
Fig. 2. Energy consumption of industry, energy consumption of agriculture and agricultural commodity prices index in 

Iran over the period 1991-2016 (million ton of crude oil equivalent (COE)) - (EBSI, 2016). 
 

 Considering global market interactions, 
international sanctions, increasing demand due to 
growing population, drought and desertification, oil 
price fluctuations, reducing global food production, and 
increasing the price of agricultural inputs, the essential 
and strategic agricultural sector of Iran has been facing 
severe challenges. Since in the current world-economy, 
import plays an important role in production, growth, 
and economic development, production is strongly under 
the influence of factors that affect imports. There are 
restrictions on producing some required agricultural 
inputs, such as fertilizers and pesticides. Half of which 
are supplied through imports. On the other hand, given 
that the petrochemical and agricultural sectors are most 
dependent on oil, oil price fluctuations can affect the 
price of agricultural commodity prices.  
 Our literature review shows a distinct lack of 
research on modeling and analyzing the linkage between 
agricultural input price shock, especially energy and 

agricultural commodity prices in Iran. A review of 
empirical research shows that linear models have been 
used in most studies that could not show the asymmetric 
impact of energy price on the food price, so that non-
linear models should be used. The Markov switching 
model is a popular non-linear time-series model that 
involves multiple equations and can characterize the 
time-series behaviors in different regimes. This model is 
suitable for describing correlated data that exhibit 
distinct dynamic patterns during different periods. 

Considering the sensitivity of food security and the 
impact of agricultural input, the main objective of this 
paper is to develop an economic model and to gain 
reliable insight into energy consumption behavior on 
agricultural inflation, by using the Markov Switching 
Approach. 
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2.  MATERIALS AND METHODS 

2.1 Markov Switching Model 

Non-linear models assume that the behavior of variables 
is different in varying situations. The speed at which we 
see these changing variables in non-linear models are 
divided into two main groups. In one group, the 
changing situation is done slowly and smoothly (e.g., 
smooth transition autoregressive (STAR) and artificial 
neural network (ANN) models). In other group, the 
transition is done quickly, which we see in the Markov 
switching model. 
 The Markov switching model is one of the non-
linear time series models proposed by Hamilton [43]. 
This model assumes that there are m regimes for the 
time series variable yt, which is specified by 
unobservable variable st. A Markov switching 
autoregressive model (MS-AR) of regimes with an AR 
process of order p is written as follows; 

yt = � c1 + α1yt−1 + ε1 , st = 1           
c2 + α2yt−1 + ε2 , st  = 2           

� (1) 

Where 𝑢𝑡 ≈ 𝑁(0,𝜎2)  and st is resulted by the 
Markov chain with n regimes that is independent of ut in 
all of the time. The autoregressive parameters, the 
intercept, and heteroskedasticity of this model are 
dependent on the regime at time t. The hidden process st 
follows a first-order ergodic Markov chain. It means that 
the probability for regime 1 to happen at time t depends 
solely on the regime at time t−1. 
 In Equation 1, the transition probability from one 
regime to another regime is calculable in the form of 
conditional probabilities, where pij represents the 
transition, as defined below: 

𝑃(𝑠1, 𝑠2, … 𝑠𝑡−1) = 𝑃(𝑠𝑡−1 = 𝑖) = 𝑝𝑖𝑗  (2) 

 In Equation 2, p is a one-step transition probability, 
which indicates the transition probability from i to j. The 
probability of switching is captured in the matrix P, 
known as a transition matrix. 

𝑃 = �
𝑃(𝑠𝑡−1 = 1) 𝑃(𝑠𝑡−1 = 2) 
𝑃(𝑠𝑡−1 = 1) 𝑃(𝑠𝑡−1 = 2) 

� 

=  [𝑝11 𝑝12  𝑝21 𝑝22  ] 

(3) 

 
Where the 𝑝11 + 𝑝12 = 1 and 𝑝21 + 𝑝22 = 1 

Therefore, p12 is the transition probability from 
regime 1 to regime 2, and p21 indicates transition 
probability from regime 2 to regime 1. Also, p11 and p22 
show the stability probability of regime 1 and 2, 
respectively. 

The Markov switching model is categorized into 
different types depending on which part of the 
autoregressive model is regime-dependent and affected. 
In economic studies, what gets the most attention 
involves four varieties of Markov-switching models: 
MSM Markov-switching mean, 
MSI  Markov-switching intercept term, 
MSA Markov-switching autoregressive parameter, 
MSH Markov-switching heteroskedasticity. 

A summary of Markov models is given in Tables 1 
and 2 [44]. 
 Consequently, based on economic theories and 
empirical observations, some economic variables have 
non-linear behavior that can be modeled as mentioned 
earlier the Markov switching model is estimated by 
methods such as Maximum Likelihood Estimation 
(MLE), Expectation-Maximization (EM), and Gibbs 
Sampling Approach. To select the best-fitting model 
from the above examples, the following strategy is used: 

• Using the Akaike Information Criterion (AIC) for 
determining the optimal number of lags for 
variables 

• Comparing the estimates of a variety of 
specifications in the Markov switching models 
based on three features:1) the highest number of 
significant coefficients (especially regime-
dependent components), 2) the most amount of the 
maximum likelihood function, 3) the least amount 
of minimum variance for error terms. 

 
 

 
 

Table 1. Types of Markov-switching models. 
Name of the 

model Equation Error Terms 
Distribution 

Regime-dependent 
parameters 

MSM(m)-AR(p) ∆𝑦𝑡 − 𝜇(𝑠𝑡) = �𝛼𝑖(∆𝑦𝑡−𝑖 −
𝑝

𝑖=1

µ(𝑠𝑡−𝑖))

+ 𝜀𝑡 

𝜀𝑡~𝐼𝐼𝐷(0,𝜎2) Mean 

MSI(m)-AR(p) ∆𝑦𝑡 = 𝑐(𝑠𝑡) + �𝛼𝑖

𝑝

𝑖=1

(∆𝑦𝑡−𝑖) + 𝜀𝑡 𝜀𝑡~𝐼𝐼𝐷(0,𝜎2) Intercept term 

MSH(m)-AR(p) ∆𝑦𝑡 = 𝑐 + �𝛼𝑖(∆𝑦𝑡−𝑖) + 𝜀𝑡

𝑝

𝑖=1

 𝜀𝑡~𝐼𝐼𝐷(0,𝜎2(𝑠𝑡)) Heteroskedasiticity 

MSA(m)-AR(p) ∆𝑦𝑡 = 𝑐 + �𝛼𝑖(𝑠𝑡)(∆𝑦𝑡−𝑖) + 𝜀𝑡

𝑝

𝑖=1

 𝜀𝑡~𝐼𝐼𝐷(0,𝜎2) Autoregressive 
Parameters 
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Table 2. Types of Markov-switching autoregressive models. 

 
MSM MSI 

Mean varying Mean invariant Intercept 
varying 

Intercept 
invariant 

Autoregressive 
Parameters 
invariant 

Heteroskedasiticity 
invariant MSM-AR Linear MAR MSI-AR Linear AR 

Heteroskedasiticity 
varying MSMH-AR MSH-MAR MSIH-AR MSH-AR 

Autoregressive 
Parameters 
varying 

Heteroskedasiticity 
invariant MSMA-AR MSA-MAR MSIA-AR MSA-AR 

Heteroskedasiticity 
varying MSMAH-AR MSAH-MAR MSIAH-AR MSAH-AR 

 
2.2 BDS Test of Non-linearity 

The non-parametric BDS test was developed to 
investigate the serial correlation and non-linear structure 
in a time series based on the total correlation by Brock et 
al. [45]. In this method, the scalar time series xt, which 
has N-lengths and m-dimensions, is considered, and the 
new series of Xt creates as 𝑋𝑡 ∈ 𝑅𝑚 , 
𝑋𝑡 = (𝑋𝑡 ,𝑋𝑡−𝜏, … , 𝑥𝑡−(𝑚−1)𝜏) . In the null hypothesis 
situation of time series xt, the BDS statistic for 𝑚 > 1 is 
defined as: 

BDSm.M(r) = √M 
cm(r) − c1r(r)
σm.M(r)

 (4) 

Where 𝑀 = 𝑁 − (𝑚 -1), 𝜏  shows the number of 
surrounded point in m-dimensional space, r is the radius 
of the sphere with the center Xi and 𝑐𝑚(𝑟) is constant 
values that presented by Grassberger and Procaccia [46]. 
Thus, the null and alternative hypothesis of the BDS test 
for discovering non-linearity is as follows; 

 
 H0: the series are linearly dependent 
 H1: the series are not linearly dependent. 
 

Additionally, this test is used as a suitable 
identification tool to distinguish between linear and non-
linear models. Thus, if the analysis is performed on the 
residual of linear models, the test hypotheses are as 
follows (For more detailed information about this test, 
see the Wang et al. [47] report): 

 
 H0: The linearity of the time series process 
 H1: the series are not linearly dependent. 
 
 Following the above theoretical model, we employ 
below an empirical econometric model (Equation 5) to 
estimate the effects of energy consumption fluctuations 
and other factors on agricultural commodity prices. 

APIt =  ast + β1PPIst + β2FPIst + β3ECst + εt (5) 

Where API indicates agricultural commodity 
prices index, PPI and FPI represent pesticide prices 
index and fertilizer prices index, respectively, and EC 
denotes energy consumption of regime s at time t. 
 To estimate this equation, we will run a MS-AR 
model and some preliminary tests, such as a unit root 

test and a stability test, are employed to ensure the 
reliability of MS-AR estimation results. 

2.3 Data 

In Iran, energy prices do not fluctuate much since Iran's 
energy market is overly centralized and controlled by 
the government. However, based on the demand 
function, there is a negative one-to-one relationship 
between energy consumption and its price. Hence, we 
used the energy consumption database instead of the 
energy price in this study. 
 To examine the linkage between energy 
consumption and agricultural commodity prices in Iran, 
we used the seasonal data over the period 1991:2 to 
2017:1. The seasonal data are used in this research, 
including the agricultural commodity price index (API), 
pesticide price index (PPI), fertilizer price index (FPI), 
and energy consumption (EC) from 1991 to2017. The 
data was extracted from several official documents of 
the Central Bank of the Islamic Republic of Iran (CBI) 
[48] and reports of the Ministry of Energy (ME). 
 The descriptive statistics of the variables during 
1991-2017 showed that (API) has a mean of 103.7, with 
a maximum of 121.4, while the minimum is only 67.26. 
The pesticide price index (PPI) has a high volatility 
based on its high standard deviation. It reaches a 
maximum of 234.18, while the minimum is only 72.79. 
The fertilizer price index (FPI) has a volatility of 32.29 
with a maximum and minimum of 173.41 and 9.58, 
respectively. Finally, the energy consumption (EC) 
volatility of 0.136 million tonnes COE denotes some 
shocks between 1991-2017. Also, EC ranges from 0.56 
to 1.117 million tonne COE. The summary of 
descriptive statistics is found in Table 3. 

3.  RESULTS AND DISCUSSION 

Due to use of time series data, it is necessary to check 
the stationarity of variables. But there has been 
increasing concern that the Dickey-Fuller test, which is 
derived under a linear setting, may fail to reject the null 
of a unit root when applied to a non-linear but stationary 
time series. As mentioned earlier, we performed a 
common non-linear unit root test (Kapetanios, Shin and 
Shell (KSS) [49], Zivot and Andrews [50], Lee and 
Strazicich [51]). The results are presented in Tables 4, 5 
and 6.
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Table 3. Descriptive statistics of data during 1991-2017. 
Variable Symbol Unit Mean Maximum Minimum Std. Dev 
Agricultural Price Index API - 103.7 121.4 67.26 6.29 
Pesticide Price Index PPI - 131.8 234.18 72.79 33.27 
Fertilizer Price Index FPI - 69.9 173.41 9.58 32.29 
Energy Consumption EC Million tone COE 0.85 1.117 0.56 0.136 
Note: COE= Crude Oil Equivalent 

 
 

Table 4. KSS unit root tests results. 
Series Autocorrelation Degree t-KSS t-statistic Probability 
API 1 3.03 1.68 0.0026* 
PPI 7 -1.97 1.9 0.049* 
FPI 9 -0.9 1.9 0.036 
EC 12 4.80 1.9 0.000* 

Source: Authors’ estimates using Eviews10 
Note: * denote significance at 5% level 
All variables are in natural logarithm 

 
 

Table 5. Result of Zivot and Andrews one-break test. 
Series Lags included* t-statistics Break season 
API 8 -4.70* 2005:2 
PPI 0 -4.61* 1995:3 
FPI 0 -4.59* 2009:4 
EC 9 -4.32* 2010:2 

Source: Authors’ estimates using Eviews10 
Note: All variables are in natural logarithm 
* Lags for the difference of the series selected via t-test 
*, ** and *** denote statistical significance at 10%, 5% and 1% levels, respectively. 

 
 

Table 6. Result of Lee and Strazicich two-break test. 
Series t-statistics Breaks 
API -5.46** 2001:1 2014:1 
PPI -5.16** 1995:1 1997:2 
FPI -4.82** 2004:1 2011:2 
EC -4.88** 2011:2 2013:3 
Source: Authors’ estimates using Eviews10 
Note: All variables are in natural logarithm 
* and ** denote statistical significance at 10% and 5% levels, respectively. 

 
 The results in Table 4 show that the API, PPI, and 
EC series reject the null hypothesis, i.e., they all are 
non-linear trend stationary, while FPI implies it is a 
stationary series. 
 The results of applying the unit root test by the 
Zivot and Andrews and Lee and Strazicich methods in 
consideration of the structural break for the variables 
studied are presented in Tables 5 and 6.  
 The results for the Zivot and Andrew unit root test 
are presented in the Table 5. These results suggest that 
we can reject the null of unit root API, PPI, FPI, and EC 
at a 10% significance level, implying that all 4 variables 
considered in this study are stationary with one 
structural break at levels. 
 Table 6 presents the results for the Lee and 
Strazicich unit root test. These results suggest that we 
can reject the null of unit root API, PPI, FPI, and EC at a 
5% significance level, implying that all four variables 
considered in this study are stationary with two 
structural breaks at levels. 

 Next, we perform a test of non-linearity on the 
residuals of the linear ARMA following [45]. As shown 
in Table 7, the null hypothesis is rejected and it indicates 
that the structure of the model is non-linear. Therefore, 
the BDS test confirms the presence of non-linearity in 
the residuals. In the final step, the model estimation is 
extracted using the non-linear Markov switching model. 
 For this purpose, the model used different lags and 
regimes by applying OxMetrics software. The values of 
information criteria such as SBIC, HQ, AIC, and the 
log-likelihood ratio were compared. However, this study 
employs both the Akaike information criterion (AIC) 
and the log-likelihood ratio for model selection. Again, 
arguably the ACI is one of the most widely used criteria 
by researchers such as Pan [52], Psaradakis and 
Spagnolo [53], Manera and Cologni [54], Cavicchioli 
[55], and Mendy and Widodo [56]. 
 Finally, a model with the lowest AIC is the 
appropriate regime. Table 8 compares the 
appropriateness of the variously Markov switching 
models, with different lags and regimes. Applying 
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different specification measures on the previously 
mentioned Table 8, such as the Log-likelihood and 
Akaike information criteria, one can identify the best-
suited Markov-switching model estimation between the 

10 different samples. The selected model was MS (2)- 
AR (5) with the lowest AIC of (-4.068) and the highest 
log-likelihood of (221.372).  

 
Table 7. Result of BDS test. 
Dimension Prob Z-statistics Std. Error BDS Statistic 

2 0.00 8.302 0.007 0.061 
3 0.00 11.618 0.011 0.136 
4 0.00 12.926 0.014 0.182 
5 0.00 14.510 0.014 0.214 
6 0.00 16.761 0.014 0.241 

Source: Authors’ estimates using Eviews10 
 
 

Table 8. Results of MS models estimation regime. 
Number of regimes Model [MS-AR] Number of lags Log likelihood AIC 

2 

MS(2)-AR(1) 1 189.580 -3.46 
MS(2)-AR(2) 2 206.335 -3.77 
MS(2)-AR(3) 3 209.411 -3.829 
MS(2)-AR(4) 4 211.905 -3.898 
MS(2)-AR(5) 5 221.372* -4.068* 

3 

MS(3)-AR(1) 1 215.939 -3.998 
MS(3)-AR(2) 2 221.210 -4.044 
MS(3)-AR(3) 3 217.298 -3.884 
MS(3)-AR(4) 4 218.510 -3.870 
MS(3)-AR(5) 5 220.943 -3.998 

Source: Author’s estimates using PcGive in OxMetrics 7  
[Note the asterisk * denotes the chosen model] 

 
 

Table 9. Determination the optimal type of Markov switching model. 

MS-AR(5) AIC 
Regime 2 Regime 3 

MSI-AR(5) -3.423 -3.745 
MSMH-AR(5) -3.647 -3.568 
MSIA-AR(5) -4.119 -4.027 

MSMA-AR(5) -3.436 -3.442 
MSIH-AR(5) -4.119 -4.025 

MSIAH-AR(5) -4.126* -4.060 
MSAH-AR(5) -3.972 -4.054 

Source: Author’s estimates using PcGive in OxMetrics 7  
[Note the asterisk * denotes the chosen model] 

 

 As noted in the research method section, the 
Markov-Switching model has the various types that each 
of these is a particular component of the regime-
dependent equation. Therefore, to choose the best type, 
the Akaike information criterion was used, and the 
model with the minimum value was selected as the 
optimal model. The Akaike information criteria for each 
type of Markov Switching are reported in Table 9. The 
selected model was MSIAH (2)- AR (5) with the lowest 
AIC of (-4.129) and the highest log-likelihood of 
(226.418).  
 After model estimation and selection, the model 
MSIAH (2)- AR (5) was then tested for serial 
correlation, ARCH, and normality (see Table 10). The 
portmanteau test concluded that the error terms are not 
serially correlated. The ARCH test reported no issues of 
homogeneity of the variance of the error term. Finally, 
the normality test indicates that the residuals were found 

to be normally distributed. Also, the LR test indicated 
that the hypothesis of linearity could be rejected in favor 
of a model a Markov switching model. 
 According to this model, the period of the Markov 
switching model estimation is classified into two 
regimes. In Table 10, the parameters of the MS model 
are estimated using maximum likelihood estimation. 
Approximately, all the estimated coefficients of the 
MSIAH (2) - AR (5) model are found to be significant at 
the conventional level. As such, it is hard to make 
economic interpretation using the regime dependent 
intercepts. Since the LR-test χ2 is equal to 39.750 and 
the p-value of DAVIES statistic is less than 0.05, the 
non-linear relationship between the variables was 
confirmed.  
 Table 10 shows the estimation results of the 
parameters of the model. It indicates the fluctuations in 
agricultural prices during the period can be divided into 

http://www.rericjournal.ait.ac.th/


 Naraghi N., Moghaddasi R., and Mohamadinejad A. / International Energy Journal 21 (March 2021) 159 – 170 

www.rericjournal.ait.ac.th 

166 

two regimes: low inflation rate and high inflation rate. 
The intercept of the first regime is 3.36, indicates a low 
inflation rate, and the intercept of the second regime that 
equals 4.75 indicates a high inflation rate. The results 
show that most of the coefficients have changed by 
changing the regime. In the first regime (low inflation 
rate), PPI, FPI, and EC have affected the API, and in the 
second regime (high inflation regime), only PI and EC 
have influenced API. Furthermore, the energy 
consumption (EC) variable is statistically significant in 
all regimes. There is a negative correlation between the 
agricultural price index and energy consumption in both 
regimes that the effect of energy in the first regime is 
stronger than other regimes. Therefore, the results 
confirm that the impact of EC on API is asymmetrical. 
This finding is in line with Olasunkanmi and Oladele 
[19], Shehu et al. [18], and Pal and Taghizadeh-hesary 
et al. [17]. They found the asymmetric impact of energy 
price shocks on food price. In regime 1, the EC 
coefficient is negative and equal to -0.128, which is 
statistically significant at the 95% level and indicates an 
increase in EC lead to a decrease in API. In other words, 
if the energy consumption increases by one percent, the 
agriculture price will decrease by an average of 0.128 % 
during the period, assuming all other conditions are 
without change. Also, in regime 2, the coefficient of EC 
is negative and equal to -0.067, which is statistically 
significant at the 95% level and indicates a decrease in 
API due to an increase in EC. We can say, if the energy 
consumption increases by one percent, the agriculture 

price will decrease by an average of -0.067 % during the 
survey period 1991-2017, assuming that all other 
conditions are without change. Thus, the model 
corresponds to theoretical expectations, which imply 
that agriculture prices are affected by inputs, excluding 
fertilizer prices index at the second regime. 
 An interesting part of Table 10 is the transition 
probabilities matrix that presents the probability of 
transition from one regime at time t to another regime at 
time t+1. The results of the transition probabilities show 
that there is a high probability of remaining in the same 
regime. Considering the results of the transition 
probabilities, we can say that if there is low inflation rate 
in one period, the probability that this low rate will 
continue in the next period is 87%. Correspondingly, 
when the system is in the second regime, there is a 93% 
probability of remaining in the second regime or a 
probability of 7% switching to the first. This shows that 
only an extreme event can switch the regimes to each 
other. Further, the estimated transition probabilities are 
less than one that indicates none of the regimes are 
permanent. The number of episodes of regime 1 is less 
than the other regime during the period 1991(2) to 
2017(1).  
 Moreover, considering the estimation result of 
Table 10, one important policy implemented over the 
period 1991-2017 was the policy of eliminating 
subsidies for agricultural inputs that have been 
implemented in Iran since 2011, which has occurred in 
the high inflation rate regime. 

 
 

Table 10. Estimation results of MSIAH(2) – AR (5) model for the period 1991(2) – 2017(1). 

Regime-dependent intercepts Regime 1 Regime 2 
Coefficient P-value Coefficient P-value 

Constant 3.361** 0.000 4.754** 0.000 
Autoregressive coefficients  

API(-1) 0.719** 0.000 0.638** 0.000 
API(-2) -0.384** 0.001 -0.315** 0.003 
API(-4) -0.144** 0.025 0.195** 0.038 
API(-5) -0.140** 0.001 -0.518** 0.000 

Variables  
PPI 0.151** 0.000 -0.026* 0.058 
FPI 0.072** 0.000 -0.002 0.838 
EC -0.128** 0.001 -0.067** 0.014 

Variances  
𝝈𝟐 0.015 0.0019 0.024 0.002 

Log likelihood 224.248 
AIC -4.126 

LR-test χ2 39.750 (0.000) 
DAVIES 0.000 

Portmanteau test χ2 (12 lags) 19.236 (0.069) 
Normality test χ2 0.268 (0.874) 
ARCH 1-1 test 0.0047 (0.45) 

Transition probability  
Regime 1 Regime 2 

Regime 1 0.874 0.07 
Regime 2 0.126 0.93 

Source: Author’s estimates using PcGive in OxMetrics 7 
Note: All variables are in natural logarithm 
* and ** denote statistical significance at 10% and 5% levels, respectively. 
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 Coupled with this policy, successive droughts have 
also happened in this period. This is why the coefficient 
of pesticide price has not been positive in the high 
inflation rate regime, as the agricultural price rose due to 
decreasing production. The successive droughts periods 
are as follows 1993(1)-1999(3), 2003(2)-2008(2), as 
well as 2011(1)-2013(2) [see Table 11]. 
 Based on the expected duration in Table 11, the 
first regime has an average duration of 9 quarters while 
the other regime has 15.75 quarters duration. It implies 
that during the period 1991-2017, the agricultural 
inflation rate was low and high in the 36 seasons and the 
63 seasons, respectively. Therefore, agricultural 
inflation has mostly had fluctuations in a high inflation 
rate. 
 To further assist with the interpretation of the 
MSIAH (2) - AR (5) model, in Figure 3, the first panel 
shows the evolution of the agricultural prices index, 
while Figure 4 denotes the filtered, smoothed, and 

predicted probabilities of being in two regimes, 
respectively. From Figure 4, it can be observed that the 
second regime dominates the first regime, which 
confirms the statistical analysis reported in Table 11. 
 The estimation results showed that the Markov 
Switching model (the non-linear method) provides a 
better fit than the linear method since it allows us to 
investigate the non-linear behavior of agricultural 
commodity prices relative to input prices, especially 
energy consumption. 
 Furthermore, the results of MS-AR model 
confirmed that the agricultural prices index is influenced 
by pesticide prices index, fertilizer prices index, and 
energy consumption, all of which have a significant 
negative or positive effect on the agricultural prices 
index. Also, the probability of remaining in the high 
inflation rate is more than the low inflation rate. 
Therefore, it can be concluded that there is an 
asymmetry in the agricultural price index fluctuations. 

 
Table 11. Regime classification: episodes of two regimes from 1991(2) to 2017(1) (smoothed probabilities). 

Period Total 
Regime 1 Quarters Average Probability 

36 quarters (36.36%) with an average 
duration of 9 quarters. 

1992(3)-1992(4) 2 0.974 
1999(3)-2003(1) 15 0.949 
2008(3)-2010(4) 10 0.990 
2013(3)-2015(3) 9 0.994 

Regime 2    
Period Quarters Average Probability 

63 quarters (63.64%) with an average 
duration of 15.75 quarters. 

1993(1)-1999(2) 26 0.989 
2003(2)-2008(2) 21 0.868 
2011(1)-2013(2) 10 0.991 
2015(4)-2017(1) 6 0.950 

Source: Authors’ estimates using PcGive in OxMetrics 7 
 
 

 
Fig. 3. Graphical representation of the regime probabilities. 
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Fig. 4. Graphical representation of the types of transition probabilities. 

 
4.  CONCLUSION 

In general, the asymmetry in price fluctuations has led to 
pay more attention to non-linear models for extracting 
and examining price transmission and the relationship 
between different markets. The Markov switching model 
is one of the most popular non-linear models used in this 
field. This study investigated the relationship between 
agricultural input price, especially energy consumption, 
and the Iranian agricultural inflation during the period 
1991 (2) - 2017 (1). To that end, the model was 
estimated using the Markov switching model (MSIAH 
(2) – AR (5)). Furthermore, to detect the impact of 
energy on agricultural prices, we employed energy 
consumption data. From the estimation results, the 
following conclusions can be drawn: 
● First, based on the result of the BDS test and the 

LR-test χ2, the non-linear model is preferred over 
the linear model for analyzing the relationship 
between agricultural input prices and agricultural 
inflation. 

• Second, the estimation results are consistent with 
theoretical foundations illustrating the importance 
of input prices and energy consumption on 
agricultural commodity prices. As with most 
experimental studies reviewed, this study has also 
shown energy consumption has a negative impact 
on agricultural commodity prices. In other words, it 
can be contended that during the study period, 
agricultural input prices have been influential 
factors on agricultural commodity prices. 

• Third, the findings revealed that the low inflation 
rate and high inflation rate regimes are stable and 
that only extreme events can switch regimes. 

• Fourth, the results of the MS model showed that 
the effect of input prices on agricultural inflation is 

different in regimes. In the case of energy, the 
impact of energy consumption on agricultural 
commodity prices in the high inflation rate regime 
is less than the low inflation rate regime because 
the elimination of energy subsidies policy has been 
applied in the second regime (high inflation rate). 
Thus, the results indicate the asymmetric impact of 
energy consumption shocks on agricultural 
commodity prices. 

• Finally, a plot of the smoothed probability was able 
to report the timing of regimes of agricultural 
commodity prices index corresponding to major 
government intervention, environment, and other 
shocks. The effect of agricultural input prices on 
agricultural commodity prices indicates that Iranian 
agriculture is significantly affected by changes in 
input prices. In this study, changes in input prices 
were caused by various shocks, such as the 
elimination of energy subsidies and drought. 
Therefore, it can be concluded that the elimination 
of energy subsidies and drought were, directly and 
indirectly, able to affect agricultural inflations 
through the price of inputs. 

In conclusion, planners and policymakers must pay 
attention to this asymmetry in agricultural commodity 
price volatility to increase the price stability in 
agriculture as much as possible by appropriate policy 
tools. 
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