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Abstract – This review explains the effective utilization of artificial neural network (ANN) modeling in various heat 
transfer applications like steady and dynamic thermal problems, heat exchangers, gas-solid fluidized beds etc. It is 
not always feasible to deal with many critical problems in thermal engineering by the use of traditional analysis such 
as fundamental equations, conventional correlations or developing unique designs from experimental data through 
trial and error. Implementation of ANN tool with different techniques and structures shows that there is good 
agreement in the results obtained by ANN and experimental data. The purpose of the present review is to point out 
the recent advances in ANN and its successful implementation in dealing with a variety of important heat transfer 
problems. Based on the literature it is observed that the feed-forward network with back propagation technique 
implemented successfully in many heat transfer studies. The performance of the network trained were tested using 
regression analysis and the performance parameters such as root mean square error, mean absolute error, 
coefficient of determination, absolute standard deviation etc. The authors own experimental investigation of heat 
transfer studies of tube immersed in gas-solid fluidized bed using ANN is included for strengthening the said review. 
The results achieved by performance parameters shows that ANN can be used reliably in many heat transfer 
applications successfully. 
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 1. INTRODUCTION 

Development of computer based algorithms for various 
heat transfer applications is emerging as a successful 
tool in the field of thermal engineering. Artificial 
intelligence algorithms used in this field are simple 
models of human intelligence and evolutionary 
experience. The enhancement of heat transfer is a 
significant area that attracts a great deal of researchers’ 
attention. The methods used for such analysis include 
using fundamental equations, employing conventional 
correlations, or developing unique designs from 
experimental data through trial and error. Also the heat 
transfer problems are becoming increasingly more 
complex and that the need for modeling single steady 
phenomena requires dealing with dynamics, system 
performance, optimization, and control. To overcome 
this difficulty, a simple artificial neural network (ANN) 
method has been implemented in various heat transfer 
studies based on databases available from 
experimentation. ANN have been successfully employed 
for various heat transfer applications like solar energy, 
design of a steam generating plant, estimation of heating 
loads of buildings, prediction of air flows in a naturally 
ventilated test room, waste heat recovery heat 
exchangers, gas-solid fluidized beds as modeling and 
thermal process analysis [1]. The advantage of using 
                                                 
*Department of Mechanical Engineering, SIT, Symbiosis International 
University, Pune-412115, Maharashtra, India.  
 
+ Prestige Institute of Engineering & Science, Indore-452010, Madhya 
Pradesh, India.  
 
#SIT, Symbiosis International University, Pune - 412115, Maharashtra, 
India. 
 
1Corresponding author: Tel:  + (91)-9921512503. 
E-mail address: klaxmanv@rediffmail.com 

ANNs to simulate thermal processes is that, once they 
are trained, they represent a quick and reliable way of 
predicting their performance. The ANN modeling 
includes numerous advantages, such as accurate 
approximations of complex problems, greater efficiency 
than phenomenological models even for multiple 
response computations, and greater effectiveness even 
with incomplete and noisy input data [2]. ANN does not 
need definition of correlations and iterative method; it 
needs only input/output samples for training a special 
neural network, in turn, obtaining output results as test 
samples fed into trained network [3]. The models using 
first principles are obtained by deductive process 
whereas the tendency of human being to learn any 
activity for a particular action/reaction process is by 
inductive process which goes on reducing the errors or 
increasing the accuracy and efficiency of an activity. 
The empirical models and correlations developed by 
conventional methods are complex in nature, difficult to 
predict non-linear relationship, less accurate, and require 
long computing time. ANN can provide a platform for 
solving such thermal processes with quick and reliable 
way of predicting their performance. The changes in the 
system can also be continuously updated easily. Neural 
network (NN) has the ability to learn highly non-linear 
relationship which processes information by its dynamic 
system response to external inputs [4]. 
 The purpose of this study is to present the ANN 
structure, methodology and implemental issues in 
general heat transfer problems, important heat transfer 
applications like heat exchangers and fluidized bed heat 
transfer studies using ANN and their corresponding 
results. This review of the ANN methodology and 
applications in various heat transfer applications will 
encourage the thermal engineers to consider ANN for 
dealing the critical heat transfer problems which are 
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difficult to treat by conventional methods. The author’s 
own experimentation study: ANN modeling to predict 
heat transfer coefficient and Nusselt number for 
horizontal tube immersed in gas-solid fluidizing bed of 
large particles is explained in brief to strengthen the 
successful implementation of ANN in heat transfer 
studies. 

2.  ARTIFICIAL NEURAL NETWORK 
 STRUCTURE AND METHODOLOGY 

ANN is an information processing paradigm inspired by 
biological neuron system of human brain. It consists of a 
large number of highly interconnected processing 
elements called as neurons [5]. It is observed that in 
analysis, data used is very important which represents 
the past data and performance of real system and a 
suitable selection of neural network model. ANN can 
model the inherent relationship between any set of input 
and output data accurately without knowing a physical 
system. It also considers all the parameters affecting the 
physical system. The variable relations such as 
nonlinearity, multiple variables and parameters, and 
noisy and uncertain input and output data are considered 
easily. ANN consists of large number of processing 
units in the network which runs parallel data processing 
hence the methodology is more accurate. It also deals 
with dynamic modeling and adaptive control hence any 
sudden changes and control in the system can be 
adopted easily. Such simplicity cannot be implemented 
by traditional analysis methods in thermal engineering 
hence thermal system analysis and control can be 
implemented by ANN with more accuracy and less 
computing time. The large amount of experimental data 
available from various thermal processes helps in terms 
of input and output data required for training the neural 
network which is essential for the ANN implementation. 
The data available are mostly in the form of heat-
transfer correlations. In thermal analysis we always need 
to validate theoretical models and hence available 
experimental data will be used in ANN analysis. In 
addition, experimental data obtained under specific 
dynamic conditions can also be used to train dynamic 
ANNs. The neural network can be trained in real time 
when the experimental data are being obtained at the 
same time, a feature useful in the development of 
dynamic adaptive-control schemes [6].  
 ANN consists of a large number of processing 
units fully interconnected as nodes or artificial neurons, 
organized in layers. There are, three groups of node 
layers in general, namely, the input layer, one or more 
hidden layers, and an output layer, each of which is 
occupied by a number of nodes. All the nodes of each 
hidden layer are connected to all nodes of the previous 
and following layers by means of synaptic connectors. 
Each connector is characterized by a synaptic weight. 
The input layer is used to designate the parameters for 
the problem under consideration, while the output-layer 
corresponds to the unknowns of the problem under 
consideration. The parameters in the input and output 
layer are need not to be all independent. The weights of 
the connectors are the weighting functions that 

determine the relative importance of the signals from all 
the nodes in the previous layer. At each hidden-layer 
node, the node input consists of a sum of all the node 
outputs from the nodes in the previous layer modified by 
the individual interconnector weights and a local node 
bias. At each hidden node, the node output is determined 
by an activation function, which plays the role to 
determine whether the particular node is to activate or 
not. The information by the connector and node 
operations starts at the input layer, moves forward 
toward the output layer [7]. Such a network is known as 
a feed-forward network as shown in Figure 1. 
 The error at each of the output node can be 
determined by comparing the calculated feed-forward 
data with the experimental output data. The training of 
the network performs the adjustment of node biases and 
weights in the network to minimize the errors between 
target output and desired output. The training procedure 
for feed-forward networks is known as the supervised 
back propagation (BP) learning scheme where the 
weights and biases are adjusted layer by layer from the 
output layer toward the input layer [8], [9]. The process 
of minimizing error continues till to achieve the 
performance level defined by user with backward 
learning. The first step in the training process is to 
assign initial values to all the synaptic weights and 
biases in the network. The values may be either positive 
or negative, and in general practice, are taken to be less 
than unity in absolute values. The next step is to 
complete all the node input and output calculations 
based on activation function used in the network. The 
activation functions such as step function, the logistic 
sigmoid function, the hyperbolic tangent, the Gaussian, 
the wavelet, have been proposed by various studies in 
recent past. The activation function may be changed 
from one hidden layer to another. The most popular and 
preferred activation functions is the continuous version 
of the step function, known as the logistic sigmoid 
function, which possesses continuous derivatives to 
avoid computational difficulties. 
 The learning rate of the network plays important 
role to scale down the degree of change made to the 
connectors and nodes. The larger the learning rate, the 
faster the network will learn, but there is a chance that 
the ANN may not reach the desired outcome due to 
oscillatory error behaviors. Its value is normally selected 
in the range 0.4–0.5. In some cases to further modulate 
the error-correction rates, a momentum term is added, 
characterized by a momentum rate based on the old 
weight and bias changes in the previous learning 
iteration [10]. An epoch or cycle of training decides 
computing a new set of weights and biases successively 
for all the runs in the training data. The calculations are 
then repeated over many cycles while recording an 
overall error quantity for a specific run within each 
epoch. After a cycle of the runs is completed, a 
maximum or average cycle error can be determined. The 
weights and biases are continually updated throughout 
the runs and cycles. The training is terminated when the 
last cycle error falls below a prescribed performance 
level defined by user. The final sets of weights and 
biases can then be used for prediction purposes, and the 

http://www.rericjournal.ait.ac.th/


L.V. Kamble, D.R. Pangavhane and T.P. Singh / International Energy Journal 14 (2014) 25-42 
 

www.rericjournal.ait.ac.th  

27 

corresponding ANN becomes a model of the input-
output relation of the given problem. As ANN is to be 
trained to interpret the relationship between input and 
output data, the data used for the training should be 
sufficient enough to understand the process by the 

network. Generally 75 to 80% of the total data is used 
for training the network whereas remaining 25 to 20% of 
the data is used as testing data to evaluate the accuracy 
of the network. 

 
 

 
Fig. 1. Feed-forward neural network model. 

 

3. ARTIFICIAL NEURAL NETWORK – 
 THERMAL PROBLEMS 

The thermal problems involve multidimensional 
fundamental disciplines with complex geometry. 
Experimentation plays important role in the 
development of thermal science and engineering. The 
experimental data correlates with dimensionless groups 
and are treated as physical models for performance 
prediction and design of thermal systems. It has been 
observed that there is a fundamental inadequacy in these 
correlated results. The existing experiment based 
database can be used to develop excellent ANN-based 
thermal models. Recent advances in the ANN 
methodology and good results are attracting an 
increasing number of thermal engineers to apply the 
ANN analysis to critical and challenging thermal 
problems. The heat transfer problems can be broadly 
classified in two categories: i) steady state ii) unsteady 
state or transient. Much of the current knowledge is 
based on heat-transfer correlations and unsatisfactory 
approximate theories. ANN analysis can be applied to 
obtain ANN-based models, which are significantly more 
accurate than the traditional correlated models.  
 Heat exchanger is one of the basic applications in 
heat transfer analysis. There are large numbers of 
phenomena associated with the heat exchangers like heat 
and flow geometries, turbulence in the flow, and 
existence of hydrodynamic and thermal entrance 
regions, non uniform local heat transfer rates, fluid 
temperatures, and heat conduction along tube walls, 
natural convection within the tubes and between fins 
[11]. The individual analysis of the phenomena is easy 
but when combined result in a system; it is very difficult 
to compute. The steady state as well as dynamic 
predictions needs to perform based on number of 
assumptions and simplifications and hence the results 
are not realistic. The common practice is to develop 
approximate theoretical models based on the use of 

overall heat transfer coefficients made of individual 
heat-transfer coefficients for each fluid obtained from 
correlations with experimental data in terms of 
dimensionless numbers [12]. Always assumptions are 
made, to predict the approximate model, such as, thermo 
physical properties of fluids and simplified geometrical 
parameters. As a result, the resulting heat-transfer rates 
do not predict well the actual heat-transfer performance 
of the heat exchangers under consideration. ANN 
analysis provides a very accurate tool for modeling the 
heat exchanger performance, which does not use any 
simplifying and artificial assumptions, but still considers 
all the physical effects that relate the input physical 
parameters to the heat exchanger performance.  
 One of the important thermal problems is heat 
transfer studies in gas-solid fluidized bed as fluidization 
techniques have found vast applications in chemical and 
mechanical industries in the recent past. The important 
industrial applications of fluidized beds are design of 
commercial catalytic reactors, design of fluidized 
nuclear reactor, fluidized bed drying and now a days 
waste heat recovery fluidized bed heat exchangers in 
mechanical industries [13]. Fluidized bed heat transfer 
includes the heat transfer between immersed surface and 
bed. The computation through neural network of these 
fluidized beds has proven that the ANN can represent 
system behavior more accurately than the dimensional 
analysis approach and analysis by first principles. 

4.  ANN INCORPORATING GENERAL HEAT  
 TRANSFER PROBLEMS 

Benjamin et al. [14] describe two frameworks: non-
recurrent and recurrent, using ANN in approximate 
simulation of the behavior of physical system response. 
The study represented efficient modeling of physical 
systems by preprocessing the training data using any of 
a number of simplifying transformations like principal 
component analysis, modal filtering, elimination of 
statistically dependent components of motion and 
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transformation of the components of motion to 
statistically independent, standard normal random 
signals. They found that satisfactory simulation of 
complex systems can be achieved with ANNs with 
computation times up to two orders of magnitude lower 
than phenomenological models. Solution of inverse heat 
conduction problem for the estimation of thermal 
conductivity and specific heat using combination of 
ANNs and Levenberg-Marquardt (LM) method was 
investigated by Soeiro et al. [15] The multi layer 
perceptron (MLP) [16] NN with BP algorithm was used. 
The combination of ANN-LM found in good agreement 
with the experimental data. Rafiq et al. [4] represented 
the practical guidelines for designing ANN for 
engineering applications. The major aspects like 
building NNs, pre-processing of training data, data 
selection for the neural network training, duration of NN 
training, speeding up the training process of three types 
of NN: MLP, radial basis functional network (RBFN) 
and normalized RBF (NRBF) are discussed. The results 
show that ANN is a powerful tool for solving some of 
the complicated problems even when input data contain 
errors and are incomplete. Three NNs were compared 
and proved that MLP and NRBF performed equally well 
but RBF showed a poorer performance.  
 A new method of predicting critical heat flux 
(CHF) with ANN was developed by Guanghui et al. 
[17]. The ANN was trained based on three conditions: 
upstream conditions, local or CHF point conditions and 
downstream conditions. The effects of main parameters 
such as pressure, mass flow rate, equilibrium quality and 
inlet sub-cooling on CHF were analyzed using ANN. 
The BP algorithm was adopted for weight adjustment. 
ANN was developed with one hidden layer in which 
there were 40 neurons. A net input vj to a neuron in a 
hidden layer k is calculated by 

 ∑
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where n is number of k-1 layer neurons and the weights 
are denoted by wji, threshold offset by θ j,  The output of 
the neuron oj is given by an activation function. The 
activation function used in this work was  
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 The weights wji of the neurons were trained in such 
a way as to reduce the system error EAV to a minimum 
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where dj(n) is the desired output. The improved values 
of the weights were achieved by making incremental 
changes Δw ij proportional to ∂EAV/∂ w ji  

ji

AV
ij w

E
w

∂
∂

−=∆ η                                               (4) 

where η is learning rate, chosen 0.9 in this analysis and 
new weight for m+1 step is given by 
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where α is momentum coefficient used to improve 
convergence and chosen 0.9 in this study.  

)(')(5.0 kkkk vfod −=δ      For output neurons     (6) 

∑=
k

kjkkj wvf δδ )('            For hidden neuron      (7) 

The ±10 % accuracy was achieved for predicting CHF 
based on CHF point conditions. Prediction of critical 
heat flux using ANN in round vertical-tube flow of 
water under low pressure and oscillating flow conditions 
for either natural or forced circulations was carried out 
by Su et al. [18]. The standard feed-forward algorithm 
was selected, but using hyperbolic-tangent activation 
function, with slight variation of the basic methodology. 
The training process was aided by the use of both 
optimized learning and momentum rates. The inputs 
included pressure, mean mass flow rate, relative 
amplitude, inlet sub-cooling, oscillation period, and 
geometrical ratio of the heated length to tube diameter. 
Additional input node was a numeral unity, providing a 
threshold to nodes in the next layer. The ten-node 
hidden layer also included a unity node for the same 
purpose. The single-node output layer was a 
dimensionless ratio of the critical heat flux with 
oscillation to that without oscillation given by the test 
data. The study utilized two separate trained networks: 
one with natural and the other for forced circulation data 
sets. It was demonstrated that the average parity ratios of 
the training sets were well within 10%, while the 
average error of the testing data. A simulation of natural 
convection heat transfer from a confined isothermal 
horizontal elliptic tube based on ANN was developed by 
Hayati et al. [19]. Previously Ashjaee et al. [20] 
developed an individual ANN network for each access 
ratio which was time consuming and computational 
speed was very less. Such problems were overcome by 
developing only one ANN for all axis ratios where axis 
ratio was considered as one of the input to the network. 
The average Nusselt number considered as a function of 
three variables: wall spacing to tube minor axis ratio, 
Rayleigh number and axis ratio. The feed-forward MLP 
network architecture was selected. The network 
configuration selected for the study is shown in Figure 
2. 
 The transfer functions for the layers were 
tansig/tansig/tansig/purelin respectively. The details of 
the ANN parameters are shown in Table 1. 
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Fig. 2. Network configuration. 

 
 

Table 1. Optimum parameters of ANN for the study. 

ANN Parameters Details 

Neural Network MLP 
No. of hidden layers 2 
No. of neurons in the input layer 5 
No. of neurons in the first hidden layer 8 
No. of neurons in the second hidden layer 18 
No. of neurons in the output layer 1 
Learning rate 0.5 
No. of epochs 1000 
Adaption learning function Train lm 
Training error 0.00001 

 
 
The results showed that the maximum deviation for the 
train set was less than 0.325% and the maximum 
deviation for the test set was less than 1.89 %. That 
shows the best fit between the experimental and 
predicted data.  
 Unsteady state heat transfer is one of the important 
areas in heating and cooling industrial systems. 
Temperature profiles are required in different time 
elements for various geometries like flat plate, long 
cylinder and sphere. Developing the mathematical 
equation for the unsteady state heat conduction has been 
solved for various geometries by Gurney-Lurie and 
Heisler charts. The charts have been used for estimation 
of temperature at various locations within the material as 
a function of time. The algorithm MLP, trained with 
generalized delta rule was developed by Pandharipande 
et al. [21] as below.  
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The data generated for these charts was used for training 
and it was observed that the predictions of these ANNs 
were so accurate that they can replace these charts and 
reduce the arbitrariness in reading the charts with high 
accuracy for interpolation. The new features in the 
algorithm were implemented like option with activation 
function, selection of either two or three previous time 

elements for error BP algorithm, numerical values of 
momentum function and learning rate can be changed in 
training mode. An attempt was made to use ANN to 
model the thermal transient process and the thermal 
behaviour of reciprocating mixer by Rakoczy et al. [22]. 
The mixing was varied out with a single perforated 
plates agitators with the different degree of perforation 
(ratio of hole-to-solid area of plate) oriented horizontally 
and reciprocating in a vertical direction. The agitator 
was always placed at half of the liquid height in the 
vessel. For practical application, RBF network was 
structured so that it can approximate the five 
characteristic quantities of thermal-transient curves and 
estimate the dynamic behaviour of temperature at 
unsteady heat transfer in the reciprocating mixer. The 
simulation results indicate that the MLP network model 
can appropriately predict the characteristic quantities of 
thermal transient processes such as the time lag of 
thermal process, the maximal value of temperature, the 
time of the achievement of maximal value of 
temperature, the time duration of thermal process and 
the quantity of area between the thermal response of 
transient process and the time axis by using the set of 
input operational parameters. The experimental 
investigation was performed by Scalabrin et al. [23] in 
forced convection heat transfer to supercritical carbon 
dioxide inside tubes using NNs, implemented multilayer 
feed forward NN with only one hidden layer. Four 
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architectures were applied to the regression of heat 
transfer coefficients as functions of working conditions; 
NN in terms of dimensionless numbers, NN in terms of 
physical variables (2 Nos.) and NN accounting for 
property variation. The transfer function used here was a 
sigmoid function of the form:  

xe
xf γβ 21

1)( −+
=                                       (9) 

 Two positive parameters were applied in Eq. (9) to 
make the functions behavior more flexible: β changes 
the activation span and γ determines the steepness of the 
sigmoid function. The second architecture directly 
represents the heat transfer coefficient a as a function of 
the controlling physical quantities as independent 
variables, such as the reduced pressure, reduced 
temperature, mass flow rate, and heat flux. A third NN 
architecture was studied, that was similar to the first, but 
with slightly different inputs. From a functional point of 
view, this architecture strictly parallels the input/output 
variables of the conventional correlation. In this study, 
the error deviation, average absolute deviation and bias 
were evaluated for the validation of the results. 
 Heat transfer of a silver/water nanofluid in a two-
phase closed thermosyphon (thermally enhanced by 
magnetic field) was predicted by Salehi et al. [24] using 
optimized ANN. A MLP neural network was used to 
estimate the thermal efficiency and resistance of a 
thermosyphon during application of a magnetic field and 
using nanoparticles in the water as the working fluid. 
The magnetic field strength, volume fraction of 
nanofluid in water and inlet power was used as input 
parameters and the thermal efficiency and thermal 
resistance were used as output parameters. The Genetic 
Algorithm (GA) ANN predicts the thermosyphon 
behavior correctly within the given range of the training 
data. In this study, a new approach for the auto-design of 
neural networks, based on a GA, was implemented to 
predict collection output of a closed thermosyphon. GA 
was implemented for optimizing the NN parameters 
such as number of neurons in the hidden layer, the 
coefficient of the learning rate and the momentum. The 
correlation coefficients between the desired parameters 
(efficiency and resistance) and the GA-MLP output 
found to be 0.98 and 0.99 with respect to experimental 
data. Modeling of a photovoltaic thermal collector in 
thermal and electrical along with NN was performed by 
Ravaeel et al. [25]. Ambient temperature of collector, 
cell temperature, and fluid temperature at duct inlet, 
fluid velocity in duct, solar identity and time were used 
as input layer and the thermal efficiency and electrical 
efficiency were outputs. Networks with different hidden 
layers used for modeling and performances evaluated 
with maximum correlation coefficient, minimum root 
mean square error (RMSE) and low coefficient of 
variance (COV). The results showed that the ANN with 
1 hidden Layer and 10 neurons in this layer found to be 
with best performance. 

 100
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 The term ai represents ith experimental data. The 
controlling of photovoltaic collectors can well be 
modeled using ANN. Selection of the proper training 
function in NN technique decides success of modeling. 
Singh et al. [26] compared the performances of three 
training functions (TRAINBR, TRAINCGB and 
TRAINCGF) used for training NN for predicting the 
value of the specific heat capacity of working fluid, 
LiBr-H2O, used in vapour absorption refrigeration 
system. The parameters used for the comparison was on 
the basis of percentage relative error, coefficient of 
multiple determination, RMSE and sum of the square 
due to error. The inputs parameters are vapor quality and 
temperature and one output parameter selected was 
specific heat capacity. Training was continued up till the 
least value of mean square error (MSE) at definite value 
of epochs which was represented. Based on the results 
by performance parameters it was found that TRAINBR 
function showed better performance as compared to 
other two training functions. Elsayed [27] in his 
experimental work of small diameter helically coiled 
tubes for the evaporator of miniature refrigeration 
systems implemented NN techniques to predict the flow 
boiling heat transfer coefficients inside helically coiled 
tubes. He investigated the flow boiling of refrigerant 
R134a in helically coiled tubes with diameters ranging 
from 2.8 mm to 1.1 mm and coil diameter ranging from 
30 mm to 60 mm. The normalized convective, boiling 
numbers and liquid heat transfer coefficient were used 
as the inputs for the developed network while the 
normalized ratio of the two-phase to liquid heat transfer 
coefficients was set as the network output. The ANN 
method produced a better prediction of the experimental 
results with ±30%. 

5.  ANN MDOELS INCORPORATING HEAT 
 EXCHANGER  

Heat exchanger is a useful device used in many 
engineering process for heating and cooling of flowing 
fluids. The major applications are in the field of 
refrigeration and air-conditioning systems, food 
processing systems, power plants, chemical industries, 
space applications etc. Prediction of heat transfer rates 
of heat exchangers is the core area in design of thermal 
systems under prescribed operating conditions. 
Conventional steady-state modeling approaches, used 
are development of correlations, provide predictions 
with large uncertainties. The experimental errors and 
assumptions in the analysis lead to uncertainties. Control 
of these devices needs dynamic simulations for which 
only a limited number of models are available. ANN 
techniques are used in heat exchanger for prediction of 
outputs and in control of operations. The simulation of 
time dependent behavior of a heat exchanger using ANN 
technique was performed by Diaz et al. [28]. Authors 
use the combined advantages of ANNs and internal 
model control to generate an efficient real time control 
scheme for a heat exchanger. The exchanger transfers 
heat from water to air, and the objective was to control a 
single output variable, the outlet air temperature by 
changing a single input variable, the air speed. It is 
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observed that multilayer networks are universal 
approximators capable of approximating any measurable 
function to any desired degree of accuracy. To train the 
ANN, BP algorithm was used. The prediction in 
dynamics needs to consider the order of the system. One 
has to provide values of relevant variables at previous 
instants of time, because the ANN is simulating as 
differential equation of unknown order. Dynamic 
simulations using ANN technique was performed by 

training the NN with the information of the dynamic 
behavior of heat exchanger as shown in Figure 3. The 
variables involved in the problem were presented at time 
t–Δt as an input to the network and the output 
corresponds to the variables at time t. It is rarely 
necessary to train the network with data from two 
previous time steps, as long as the chosen time step is 
reasonably small. It was proved that the ANN prediction 
was superior to that of the correlation. 

 

 
Fig. 3. Training method for dynamic problems. 

 
 

 The governing of dynamics of heat exchanger pilot 
plant was performed by Kharaajoo et al. [29] using NN 
based predictive controller. To develop a neural network 
model for the heat exchanger, outlet liquid temperature 
was considered as output and liquid flow rate as input 
data whereas steam temperature and inlet liquid 
temperature were kept constant. A MLP NN with 10 
neurons in the hidden layer was used. Predictions were 
obtained and a quadratic form cost function was utilized 
to compute the prediction error and to derive the optimal 
predictive control strategy. For the estimation of non-
linear process the NN must be trained until the optimal 
values on the weight vectors are found. The NARMAX 
model was used as given below; 

)](),...,1(),(),...,1([)( nkykymdkudkuFky −−−−−−=         (11) 

where F(.) is a non linear function, d is a dead time, n 
and m are the orders of the nonlinear system model. The 
NN output was given by 

 )]1(),1([)( −−−= kYdkUFky N                          (12) 

where FN is input output transfer function of the NN 
which replaces the nonlinear function F in previous 
equation U(k-d-1), Y(k-1) are vectors which contain m 
and n delayed elements of u and y respectively from the 
time instant k-1. ANN model was developed to predict 
the performance of a heat exchanger operating in real 
mechanical ventilation and air-conditioning system by 
Hu et al. [30]. The accurate prediction of steady state 
and dynamic behavior of heat exchangers was applied. 
In this study feed-forward network was chosen with BP 
algorithm. These ANN models were implemented under 
MATLAB, which provides a very convenient computing 
environment for the calculation of derivation of the 
ANNs. BP combines adaptive learning and momentum 
training using heuristic technique. Under steady state 
prediction the input parameters were: inlet chilled water 
temperature, outlet chilled water temperature, the inlet 
temperature of hot air, mass flow rate of chilled water 
and the mass flow rate of air. The output parameter was 

heat transfer rate. All the data from experimentation 
were normalized to [0, 1] range before providing to 
ANN. The total 445 sets of data were used, out of which 
345 sets were used randomly for training and remaining 
data for testing purpose. The final structure of the ANN 
was determined by checking the error convergence by 
changing the hidden nodes. The result shows that 10 
hidden nodes could achieve the convergence. The most 
of the predicted values were within 95-105% of the 
measured values. The mean relative error was 1.38% 
and the maximum relative error was 4.87%, it shows 
that the behaviour of heat exchanger in steady state and 
dynamic conditions can well predicted by ANN 
modeling. The NN prediction was performed of the 
overall and detailed heat transfer characteristics of a 
compact fin-tube heat exchanger [31], [32] under 
distorted flow conditions by Tan et al. [33]. The 
experiments were conducted with air and water/ethylene 
glycol anti-freeze mixtures as the exchanger fluids over 
a wide range of flow rates and inlet temperatures. The 
study also examines the use of an alternative type of 
NN, called as self-organizing map, to identify and 
classify the deterioration in exchanger performance 
associated with different degree of inlet obstruction. A 
multilayer feed forward NN was utilized. An ANN was 
developed initially to represent the overall behavior of 
the heat exchanger over the whole range of flow rates, 
inlet temperatures, liquid compositions and blockage 
ratio studied in the experiments. The single output 
neuron represented the overall rate of heat transfer 
between the two test fluids. There were total six hidden 
neurons found to be most suitable by a trial and error 
process. The NN predictions were in much closer 
agreement to the experimental data than corresponding 
predictions derived by the use of a conventional non-
linear regression model. The performance parameters 
such as the RMSE and correlation coefficient were 
compared as given in Table 2. 
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Table 2. Comparison of ANN and non-linear regression model. 

Performance 
indicators 

Training Data Test Data Validation Data 
ANN NLR ANN NLR ANN NLR 

Simulation 1 

MAE (%) 0.6 2.9 0.9 2.8 0.9 3.2 

RSME 0.017 0.086 0.030 0.077 0.032 0.092 

Corr-coeff 0.999 0.980 0.998 0.984 0.997 0.975 

Simulation 2 

MAE (%) 0.7 8.2 2.3 5.2 1.8 5.1 

RSME 0.022 0.227 0.062 0.163 0.053 0.143 

Corr-coeff 0.999 0.980 0.991 0.935 0.995 0.946 

 
 
 Optimization of ANN architecture for shell and 
tube type heat exchanger was performed by 
Pandharipande et al. [34]. Estimation of exit 
temperatures of both the fluids as a function of inlet 
temperature conditions and flow rate was performed. 
ANN architecture with single, two and three hidden 
layers were tried for developing MLP feed forward NN. 
Numbers of neurons in hidden layers were varied and 
the process time required and error were checked to 
decide the efficient NN structure. Estimation of 
convective heat transfer coefficient and pressure drop in 
condensation of R134a flowing downward inside a 
vertical smooth copper tube was performed by Balcilar 
et al. [35]. R134a and water were used as working fluids 
in the tube side and annular side of a double tube heat 
exchanger, respectively. Input of the ANNs were the 
measured values of test section such as mass flux, heat 
flux, the temperature difference between the tube wall 
and saturation temperature, average vapor quality, while 
the outputs of the ANNs were the experimental 
condensation heat transfer coefficient and measured 
pressure drop in the analysis. Condensation heat transfer 
characteristics of R134a were modeled to decide the best 
approach using several ANN methods such as MLP, 
RBFN, generalized regression NN and adaptive neuro-
fuzzy inference system. The performance of the method 
of MLP with 5-13-1 architecture and radial RBFN was 
found to be in good agreement. Xie et al. [3] 
implemented ANN for heat transfer analysis of shell-
and-tube heat exchangers with segmental baffles or 
continuous helical baffles. Three heat exchangers were 
experimentally investigated. i) heat exchanger with 
segmental baffles ii) heat exchangers with continuous 
helical baffles, middle-in-middle-out (shell side flows) 
iii) heat exchangers with continuous helical baffles, 
side-inside-out (shell side flow). Prediction of the outlet 
temperature differences in each side and overall heat 
transfer rates were performed. Different network 
configurations were also studied by the aid of searching 
a relatively better network for prediction. Eight 
independent parameters were fed into the input layer of 
the network: Reynolds number and inlet temperature in 

each side, total number of tubes, diameter of center tube, 
total number of baffles and baffle pitch. The output layer 
contains three parameters: heat transfer rate, temperature 
differences in each side. The maximum deviation 
between the predicted results and experimental data was 
less than 2%. Ten different ANN configurations were 
tried to decide the best configuration.  
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 R represents the average accuracy of the prediction, 
while σ reflects the scatter of the prediction. For three 
layers, when the number of hidden nodes increased to 5, 
R is much closer to unity. This indicates that adding 
more hidden nodes may not improve the predicted 
results. Hence, configuration 8-6-5-3 was selected for 
testing with smallest R=1.089 and σ=0.1387 and the 
maximum relative error was less than 1.5%. Wu et al. 
[36] demonstrated the applicability and feasibility of 
ANN for estimating the performance of a wavy-fin gas 
cooler in CO2 transcritical system. The effect of the five 
input parameters (inlet pressure, inlet temperature and 
mass flow rate of CO2, inlet temperature of air and inlet 
velocity of air) was examined individually by keeping 
the other four parameters constant. MLP model was 
applied to forecast the performance of the gas cooler, for 
the highly nonlinear relationship between the five input 
parameters and four output parameters, by searching an 
optimal weight in its weighting space. During the 
training process, the performance of the NN was 
evaluated by calculating RMSE values of the output 
data. The root mean square (RMS) value is defined as: 
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=                                     (15) 

where, P is the number of the output processing 
elements; N is the number of exemplars in the data set; 
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yij is network output for exemplars at processing 
elements j; and d ij is the output for exemplars at 
processing elements j. At the end of training process, the 
RMS found to be 0.062. It makes sure that the trained 
ANN has satisfactory performance within the trained 
data. Wu et al. [37] predicted the performance of the 
reversible used cooling tower under cross flow 
conditions as part of a heat pump system for service hot-
water heating in winter by means of ANN technology 
and experimental test. The activation function was 
chosen as the tangent sigmoid function in the hidden 
layer and the linear transfer function in the output layer. 
The input layer has five nodes, including inlet air dry-
bulb temperature, inlet air wet-bulb temperature, inlet 
CaCl2 aqueous solution temperature, CaCl2 aqueous 
solution mass flow rate and air mass flow rate. The 
output layer was with nine nodes, including heat 
absorption capacity, heating coefficient of efficiency, 
ratio of sensible heat transfer to the latent heat transfer, 
outlet air dry-bulb temperature, outlet air wet-bulb 
temperature, outlet CaCl2 aqueous solution temperature, 
ratio of sensible heat transfer to the total heat transfer, 
ratio of latent heat transfer to the total heat transfer and 
humidity ratio of moist air difference between inlet and 
outlet. The data gathered from experiments was divided 
into input matrix and target matrix. All the training and 
testing data were normalized between 0 and 1 in order to 
improve the predicted agreement. The normalization and 
anti-normalization functions of training data were 
premnmx and postmnmx function, respectively, and the 
normalization and anti-normalization functions of 
testing data were tramnmx and postmnmx function. As 
number of variables in output layer was nine till ANN 
modeling handles it with easily. 

6. ANN MODELS INCORPORTAING 
 FLUIDIZED BED HEAT TRANSFER   

Fluidized beds are widely used for different industrial 
applications, such as the coal combustors, boilers, and 
furnaces; the drying of solid particles; waste heat 
recovery heat exchangers; etc. In most applications, a 
fluidized bed consists of a vertically oriented column 
filled with particles (small or large), and a fluid (gas or 
liquid) is pumped upward through a distributor at the 
bottom of the bed [38]. The main characteristics of the 
fluidized bed are its isothermal nature and the high rate 
of heat transfer between the fluidized bed and the 
immersed surface [39]. Gas solid fluidized beds are 
aggregative in nature because of formation of bubbles of 
different sizes which results in non-uniform bed 
expansion and poor fluidization [40]. To improve the 
fluidization, disk and blade promoters were used in these 
beds. The authors [41] developed the correlation using 
dimensional analysis approach for the prediction of 
modified bed expansion ratio. The accurate behavior of 
system was represented by ANN models to predict bed 
expansion ratio. The BP algorithm for training was used 
in this study. In each case different ANN structures with 
varying number of neurons in hidden layer were tested 
keeping other parameters constant. The least error 
criteria used for the selection of final parameters of 
network. The dependent and independent variables were 
normalized so as to lie in the same range group of 0-1. 
Two models of ANN one for bed with disk and the other 
for bed with blade promoters were developed. The 
structure of NN models for test problem selected is as 
given in Table 3. 

 
 

Table 3. Structures of NN model. 

Bed Particulars Input nodes Hidden 
Nodes 

Output 
Nodes 

No. of cycles used 
For training 

Blade with disk promoter 7 20 1 50,000 
Bed with blade promoter 5 18 1 50,000 
Network Parameters Details 
Learning rate 0.001-0.1 
Momentum parameter 0.001 
Slope for sigmoid function 0.7 

 
 

 Based on least error criterion, one system was 
selected for training of the input-output data in each 
problem. The number of cycles selected during training 
was high enough so that the ANN models can rigorously 
be trained. The weights during training phase were 
initialized randomly between -1 and 1. It was observed 
that the correlation developed using dimensional 
analysis approach as well as ANN models can 
satisfactorily be used for the prediction of bed expansion 
ratio. Also ANN models provide better prediction with 
reduced standard and mean deviations. The coefficient 
of determination for training and testing data obtained 

were in the range of 0.956-0.9854 which confirms that 
the ANN models were trained properly. Hence it can be 
inferred that the ANN model based on feed forward 
architecture and trained by BP technique represents 
system behavior more accurately than the dimensional 
analysis approach. The gas-liquid co-current down flow 
packed bed reactor, which is called as trickle bed reactor 
(TBR) is commonly used for the transfer of momentum, 
heat and mass using inert packing. The values of the 
heat transfer parameters like effective wall to bed heat 
transfer coefficient (hw) and effective radial thermal 
conductivity of the bed (ker) and change with the other 
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variables are important for such TBRs. RBFN was 
applied for modeling these heat transfer parameters by 
Babu et al. [42]. The parameters like temperatures at 
four radial positions in the bed, liquid and gas rates, 
ratio of column to particle diameter were used as input 
neurons and ker, hw and the flow regime were used as 
output neurons. The experimentation includes the 
estimation of heat transfer parameters for air-water 
system over a wide range of flow rates of air and water 
covering trickle, pulse and dispersed bubble flow 
regimes in a 50 mm I.D. column with ceramic spheres (2 
mm) and glass spheres (4.05 and 6.75 mm) and ceramic 
raschig rings (4 and 6.75 mm) as the packing materials. 
The RMSE was 0.1 and 0.12 for the two training set 
used in the analysis which is quite good. An attempt was 
made to study the effect of co-axial rod and disk 
promoters of different configuration on pressure drop in 
squared gas-solid fluidized bed using ANN model by 
Sahoo et al. [43]. The various parameters like flow rate, 
initial static bed height, particle size and density were 
varied and the bed pressure drop under fluidizing 
conditions was measured. A fluidized bed of size 8.2 cm 
X 8.2 cm X 100 cm was prepared with a conical section 
and multi orifice distributor. The disc promoter consists 
of six numbers of stars of Perspex material spaced at 10 
cm gaps with a central rod 120 cm long. The rod 
promoter consists of three 6 mm dia. and 60 cm long 
steel rods which were placed at the vertices of an 
equilateral triangle with the fourth rod of 120 cm length 
placed at its centre. The pressure drop in terms of Euler 
number in fluidization condition was correlated to 

various system parameters from a dimensional analysis 
approach.                 
 For un-promoted bed, 
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 For a rod-promoted bed, 
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 ANN model was developed of a three layered feed 
forward NN. The network was trained with 60 sets of 
data, where each set consists of four system parameters 
(Hs/Dc, dp/Dc, ρs/ρf, Uf/Umf) and the corresponding 
value of experimental Euler number calculated from 
measured pressure drop. The system parameters were 
the input and the experimental Euler numbers were the 
output respectively. The network was exposed to the 
normalized set of data. The same set of data or other set 
of input data were taken as the testing data for which the 
target or output data was to be calculated. The weights 
were updated using the BP algorithm. The optimum 
parameters of ANN model are shown in Table 4. 

 

Table 4. The optimum ANN parameters. 

ANN Parameters Un-promoted 
Bed 

Disc Promoted 
Bed 

Rod Promoted 
Bed 

Error  tolerance, (0.001-100) 0.001 0.001 0.001 
Learning  Parameter, (0.01 – 1.0) 1.0 0.5 1.0 
Momentum  Parameter, (0.01 – 1.0) 0.01 0.01 0.03 
Noise factor, (0.0 – 1.0) 0.0 0.0 0.0 
Slope, (0.1 – 1.0) 0.9 0.4 0.9 

Maximum cycles  50000 50000 50000 

Input units 4 4 4 
No. of hidden layer 1 1 1 

 

 

 A modeling of a laboratory scale inverse fluidized 
bed reactor was studied using NN by Rajasimman et al. 
[44]. Degradation of starch wastewater in inverse 
fluidized bed bioreactor (IFBBR) was carried out 
continuously in different stages by varying initial 
substrate concentration and hydraulic retention time 
(HRT). Experimentation was performed to provide 
information of the process behavior and to train the 
network. The air flow rate was adjusted according to bed 
height for biomass growth. Continuous degradation 
(COD) in IFBBR was started with an initial 
concentration of 2250 mg and a HRT of 40 h. when the 

reactor reaches steady state, the HRT was reduced to 32 
h and reduction in COD was monitored. Experiment was 
continued with various HRT (24 h, 16 h and 8 h). The 
performance of the reactor was studied based on COD 
removal efficiency. The RBF network was trained to 
predict the performance of IFBBR. The criterion used to 
evaluate the performance of the reactor was to determine 
the reduction in organic matter present in the starch 
industry wastewater. The NN was trained with the 
influent substrate concentration, hydraulic retention time 
and effluent concentration of the reactor. The data used 
for the training at various hydraulic retention times and 
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at different initial substrate concentrations. The 
performance of the network was evaluated on the basis 
of an overall absolute error and RMSE. The absolute 
standard deviation (ABSD) and percentage RMSE used 
in the study is given as 

N
alExperimentNN

ABSD valuevalue )( −
= ∑                 (19) 

 100%
2

X
N
x

RMSE ∑=                                          (20) 

where x = ((experimental value – NN 
value)/experimental value) and N = number of data 
points. The low RMSE values indicate that the ANN 
modeling of IFBBR is justified for the treatment of 
starch industry wastewater. ANN approach to 
segregation characteristics of binary homogeneous 
mixtures in promoted gas solid fluidized beds was 
studied by Sahoo et al. [45]. A three layered feed-

forward NN was considered with 92 data sets in each 
case, where each case set consists of four system 
parameters and the corresponding experimental value of 
the segregation distance. The BP algorithm was 
implemented using C-programming language. The 
sigmoid activation function used was as follows: 

 )5.0
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                             (21) 

where, λ is the slope parameter. The maximum 30,000 
number of epochs executed till the MSE is below the 
pre-defined threshold value. The final coefficient and 
exponents of correlation by ANN approach were 
determined by averaging the 98 sets of output data 
components. The values of segregation distance by 
dimensional analysis (DA) approach and ANN approach 
have been compared in Table 5.  The NN structure 
model is as shown in Figure 4. 

 
 

  
Fig. 4. Neural network model. 

 
 
Table. 5.  Comparison with dimensional analysis and ANN study. 

BED Un-promoted 
Fluidized bed 

Rod Promoted 
Fluidized bed 

Disc promoted 
fluidized bed 

Approach DA 
Approach 

ANN 
Approach 

DA 
Approach 

ANN 
Approach 

DA 
Approach 

ANN 
Approach 

Standard Deviation % 5.88 5.84 5.92 5.88 5.996 6.57 
Mean Deviation % 4.81 4.75 4.86 4.87 4.92 8.18 
 
 

 Investigations of heat transfer studies were carried 
out for small and large particles of tube bundles 
immersed in fluidized bed by Ravindranath [13]. 
Immersed tube heat transfer includes heat transfer 
coefficient between tube surface and particle which 
comprises of particle heat transfer by conduction, 
convection heat transfer by gas to surface and heat 

transfer by radiation [46]. A systematic approach to 
predict heat transfer parameters using ANN was 
implemented in feed forward network with BP structures 
Levelberg – Marquardt’s learning rule. Batch training 
was used, while training, 70% of data was used for 
training and 30% for testing. Performance evaluation of 
the network was performed by regression analysis [47] 
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and most of the results obtained match well with 
experimental data. The correlations developed were as 
follow: 
 For small particles Single Tube  

( ) 3.0

364.024.0407.0

Pr.Re.66 


















 −






=

p

t

mf

mf

d
D

U
UU

Ar
Nu            (22) 

 For Multi tube 
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  For large particles single bare tube  
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 Bare Tube Bundle (in-line and staggered) 
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 The regression value coefficient of correlation 
(R=1) obtained in training small and large particles for 
single bare tube and tube bundles shows that the 
network followed good trend in training. Test results, 
the value of R ranged from 0.899 to 0.999 strongly 
support that the network predictions were found to be in 
very good agreement with the experimentally observed 
values. The accuracy of the result of the ANN model 
based on feed forward architecture and trained by BP 
technique represents system behavior more accurately 
and is acceptable in site conditions and can be employed 
by engineers. Fluidized bed dryers are extensively used 
in the food industry for drying of moist food products. 
The fluid bed dryers significantly reduce drying time 
compared with the tray dryers due to good solid mixing, 
high rate of heat and mass transfer and easy material 
transport.  A study conducted by Nazghelichi et al. [48] 
on integrated response surface methodology (RSM) and 
GA were recommended for developing ANNs with great 
chances to be an optimal one. A multi layer feed forward 
ANN was applied to correlate the outputs to the four 
inputs like drying time, drying air temperature, carrot 
cube size and bed depth. The RSM was used to build the 
relationship between the input parameters and output 
responses and used as the fitness function to measure the 
fitness value of the GA approach. Five parameters were 
used like number of neurons, momentum coefficient and 
step size in the hidden layer, number of epochs and 
number of training times. One hidden layer multi layer 
feed forward ANN with hyperbolic tangent sigmoid 
transfer function was selected for optimization process.  
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 The selected numerical parameters for optimization 
were the number of neurons in the hidden layer (2-40), 
momentum coefficient (0.1-0.7) and step size (0.1-0.4) 
in the hidden layer, epoch number (100-3000) and 

training times (1-5). The goodness of fit of the optimal 
ANN to the experimental data was based on coefficient 
of determination (R2), MSE and mean absolute error 
(MAE) for the tested models. 
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 xpi is the network output from observation i, xdi is 
the experimental output from observation i, x is the 
average value of experimental output and N is the total 
number of data observation. For ANN simulation, 
significant reduction of the total computational effort 
with a relative good precision attained using coupled 
RSM and GA approach. Drying characteristics of green 
pea with an initial moisture content of 76% (db) was 
studied in a fluidized bed dryer assisted by microwave 
heating by Momenzadeh et al. [49]. ANN for predicting 
the drying time (output parameter) was investigated; 
microwave power, drying air temperature and green pea 
moisture content were considered as input parameters. 
Already the mathematical modeling of drying processes 
have been put forward by different researchers but such 
models are not used much because of their complexity 
and long time required for computation. ANN model 
with 50 neurons was selected for studying the influence 
of transfer functions and training algorithms. The results 
revealed that a network with the logsig transfer function 
and trainrp BP algorithm made the most accurate 
predictions for the green pea drying system. The random 
errors were within and acceptable range of ±5 % with a 
coefficient of determination of 98 %. 
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 A well trained ANN model should produce small 
MAE, RMSE and SE with large R2 values. 

7. ANN MODELING BY AUTHORS – 
 EXPERIMENT BASED INVESTIGATION 
The average heat transfer coefficient was determined 
between the fluidizing bed and horizontal tube surface 
immersed in the bed of large particles. The mustard 
(dp=1.8 mm), raagi (dp=1.4 mm) and bajara (dp=2.0 
mm) were used as particles in the bed. The effect of 
fluidizing gas velocity on the heat transfer coefficient in 
the immersed horizontal tube was discussed. The 
schematic diagram of the experiment’s set up is shown 
in Figure 5. The results obtained by experiment were 
compared with correlations and ANN modeling. The 
parameters particle size, temperature difference between 
bed and immersed surface were used in the neural 
network modeling along with fluidizing velocity. 
 In the current study a multilayer feed-forward 
ANN model [33] has been developed. The network 
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consists of an input layer with three neurons (particle 
diameter dp, fluidizing velocity u and temperature 
difference between bed and tube surface ΔT’), an output 
layer of two neurons (heat transfer coefficient h and 

Nusselt number Nu), and hidden layer of five neurons. 
The schematic diagram of NN model selected for the 
current study is shown in Figure 6. 

 
 

 
Fig. 5. Schematic diagram of experimental set-up. 

 
 

 
Fig. 6. ANN structure used in the study. 

 
 

 The supervised training, in which a network is 
trained for a particular set of inputs to produce the 
desired outputs, has been used. Initially, the weights of 
input vectors and bias were chosen randomly; however, 
the weights, subsequently, were adjusted to minimize 
the network performance function i.e., MSE with 
performance level 1x10-5. The training was considered 
as completed when the NN reached user defined 
performance level. The network weights have been 
updated using the BP algorithm as implemented by 
Sahoo et al. [45]. Back propagation supervised learning 
technique in which the weights and biases have been 
adjusted by error derivative vectors is used for ANN. In 
this technique it uses a gradient descent algorithm [50] 
in which it updates the network weights and biases in 
the direction in which the performance function 
decreases most rapidly (i.e. along the negative of the 
gradient). 

 kkkk gXX .1 α−=+                                         (31) 

 Xk is vector of current weights and biases, αk is 
learning rate and gk is current gradient. The learning rate 
in training the network was set at 0.5. The algorithm 
used for the network training was Trainlm [19]. The 
training data sets have been fed for a maximum of 1000 
epochs until the MSE was below a performance goal set. 
The weights and biases have been updated only after the 
entire training set has been applied to the network. The 
readings of input and output achieved during 
experimentation have been used for the training and 
testing of the network. The network was trained with 75 
data sets (70% of data) and tested with 30 data sets (30% 
of data) hence in all 105 data sets were used in NN 
modeling. The post-training analysis has been performed 
with a regression analysis between the network response 
and the corresponding target. The resulting correlation 
coefficient between the ANN outputs and the targets 
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decides the measure of the performance of the network. 
In order to obtain the optimum number of neurons in a 
hidden layer [51], [52] the ANN model was trained with 
a varying number of neurons with the Tansig transfer 
function and Trainlm algorithm. The maximum neurons 
checked were 15, starting with a minimum of one 
neuron and then increasing the network size in steps by 
adding a neuron every time. Based on the results, the 
minimum error found at five numbers of neurons hence 
selected. The experimental and predicted values of the 
heat transfer coefficient and Nusselt number match with 
a high level of accuracy.  

∑ −= 2)]()([1 kakt
N

MSE o  , (1≤ k ≤ N)                 (32) 

where a is network output, to is target output, and N is 
number of data points. The maximum percentage errors 
of heat transfer coefficient values predicted by ANN for 
trained and tested data are 0.074% and 0.2572% 
respectively. The maximum percentage errors of Nusselt 
number values predicted by ANN for trained and tested 
data are 0.1343% and 0.3588% respectively. The 
coefficient of determination value found to be 1 and 
0.999 for trained and tested data respectively. It 
indicates that there is a good agreement between 
experimental and predicted results by ANN. 

8. FUTURE SCOPE FOR ANN METHODOLOGY 

The difficulties in heat transfer analysis by conventional 
methods like imperfect, uncertain and noisy 
experimental data, many assumptions in the analysis in 
terms of thermo physical properties of fluids, tedious 
fundamental equations, long computation time and less 
accuracy, direct correlations in terms of dimensionless 
numbers prove to be approximate analysis. These all 
drawbacks are being modified by ANN modeling 
without knowing the physical system in detail. It is seen 
that ANN methodologies represent a promising tool to 
approach and solve difficult heat transfer problems. 
There are some shortcomings like need of reliable 
experimental data and uncertainty in selection of ANN 
parameters in modeling which can be reduced by 
implementation this methodology in many heat transfer 
applications. The other tools available in artificial 
intelligence world can be combined to strengthen the 
ANN implementation.   

9. CONCLUSION  

This brief review concludes the successful 
implementation of ANN in difficult and complex heat 
transfer problems in the field of energy systems, hear 
exchangers, gas-solid fluidized beds, along with the 
authors own study of ANN implementation in gas-solid 
fluidized bed heat transfer. The basic structure and 
methodology of ANN implementation is discussed in 
general. The ANN modeling is explained in basic heat 
transfer areas in steady state and dynamic thermal 
modeling in general heat transfer applications. ANN 
results are shown in terms of accuracy and flexibility in 
its use, and also their computational and experimental 

validations. Thermal engineering analysis requires 
tedious equations and correlations to develop to satisfy 
the fundamental principles of the physical system which 
can be analyzed in a simple manner by implementing the 
ANN approach. The study shows that analysis with less 
and noisy input data and even non-linear relationship 
behavior can be properly fitted in ANN modeling. It is 
one of the easy ways to implement with multiple 
response computations and complex thermal systems. 
Based on the results achieved by researchers in their 
analysis, it can be concluded that the BP algorithm is the 
powerful learning algorithm with feed-forward structure 
in many heat transfer applications. These models 
provide better prediction with reduced standard and 
mean deviations. The regression value of R=1 obtained 
in training the network in many cases and in other some 
cases this value ranged from 0.899 to 0.999, strongly 
support that the network predictions are found to be in 
good agreement with the experimentally observed 
values. Once the ANN model trained for a particular 
thermal process, a reliable and quick response is 
possible even we can continue the updating these 
models for the changes in the system.  

NOMENCLATURE 

a’ Output of each neuron 
Ar Archimedes number 
b’ Bias vector of each neuron 
DC Column diameter of the fluidizer, [m] 
DE Equivalent column diameter for promoted 

bed, [m] 
dp Particle diameter, [m] 
Dt Diameter of tube, [m] 
Eu Euler number 
f Transfer function 
f(t) Time dependent function 
Hs Initial static bed height, [m] 
n Transfer function input 
Nu Nusselt number  
p Input vector 
Pr Prandtl number 
Pt Tube pitch, [m] 
Re Reynolds number 
t Time, s 
Uf Superficial fluidization velocity, [m/s] 
Umf Minimum fluidization velocity, [m/s] 
W Weight vector 
Wkl Weights in between second hidden and 

output layer 
x(t) Variable in differential equation 
Y target activation of the output layer 
Yl Desired output vector 

Subscript 
R number of elements in input 

Greek letters 
β1, β2 first and second momentum parameter 
δ l mean error corresponding to output layer 
Δt time step, [s] 
η learning rate 
ρf fluid density, [kg/m3] 
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ABBREVIATIONS 
ABSD absolute standard deviation 
ANN artificial neural network 
BP  back propagation 
CHF  critical heat flux 
COV coefficient of variance 
DA dimensional analysis 
GA genetic algorithm 
HRT  hydraulic retention time 
IFBBR inverse fluidized bed bioreactor 
LM Levenberg-Marquardt 
MAE mean absolute error 
MLP multi layer perceptron 
MSE  mean square error 
NN  neural network 
NRBF normalized radial basis function 
RBF  radial basis function 
RMS E root mean square error 
RSM  response surface methodology 
SE  standard error 
TBR  trickle bed reactor 
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